WORKSHOP #5

Algebra Counts

Abstract.  The algebra that we teach our students in middle school and high school has many applications.  One of the more interesting and important applications is the topic of ``enumeration," or simply counting.  The goal of this workshop is to introduce teachers and students to this application.  The binomial theorem is our point of departure.  It is reviewed as a counting theorem and then generalized to more complicated counting problems.  This workshop has no natural ending; one can simply continue to consider more and more complicated counting problems. The workshop participants need only be familiar with 9th grade algebra.  

Format. We start with a description of the workshop material as we presented it formatted as a single narrative.  In an actual presentation, some material was simply presented verbally, some in the form of projected transparencies (or projected computer screen) and some, particularly the problems, was distributed in handouts.  The main advantage of having the material in Word is that the presenter can decide the best way to divide up the material for any given audience, producing their own slides and worksheets, choosing how little or how much you want to present. The worksheets that we used are attached to the end of this file. They too can be easily altered to fit in any redesigned workshop.  

Introduction.  There is enough material here for a half-day workshop for teachers with a good algebra background - say those who regularly teach advanced algebra, precalculus or calculus.  The material covered must be cut back for groups with weaker backgrounds or for shorter workshop lengths.  For example, a successful workshop for middle school teachers was based on the material up to and including the first two worksheets excluding the more complicated problem 2.  Another possible format would be to divide the material into three or four units of a minicourse.  Some of the worksheets could then become homework assignments.  A teacher who has had this workshop and is comfortable with the material can easily adapt it to an enrichment unit for high school students.

In this workshop we are interested in strategic algebra as opposed to tactical algebra. That is we are more interested in how to set up equations that will enable us to solve a particular counting problem than in the hand computation need to actually solve the equations. Hence, a calculator or computer that does symbolic algebra can be used to enhance this workshop. The ability to get quick numerical answers adds to the workshop and should be included whenever the technology is available.

Part I: Counting with the Binomial Theorem

Recall the binomial theorem:
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This can be written succinctly with the summation notation: 
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We also know that
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, the coefficient of xi may be interpreted as the number of i-element subsets (or i-subsets) of an n-element set (an n-set).  Since we wish to generalize this counting principle, let us review this identification by way of an example.  Suppose that we had a basket of fruit that contained one apple, one banana, one cantaloupe and one date. Represent each fruit by its first letter and consider the following polynomial: 
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, which when expanded equals       
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Each term of the expansion represents a specific selection of fruit: b represents selecting only the banana, ad represents selecting the apple and date, 1 represents selecting no fruit, etc. This interpretation becomes clearer if we rewrite each factor of the left hand side in terms of powers of its variable: 
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. The expansion then becomes: 
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At this point, we introduce some useful terminology: the factor 
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is called the apple enumerator; 
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 the banana enumerator; and so on. The expansion is called the generating function of this selection problem. If all we wish to know are the answers to questions like: ``How many ways can we select two pieces of fruit from the basket?", we may replace each individual enumerator in our expansion of 
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 and observe that the answer to our question is simply the coefficient of x2 in this expansion.  We call the expansion of 
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the generating function for the number of ways of selecting a collection of fruit from a basket containing one each of four different kinds of fruit.  From this simple example, we see that in general the binomial expansion of 
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is the generating function for the number of ways of selecting i-subsets from an n-set.
Group Work: Suppose that our basket also contains a fig.  How many ways can one select 3 pieces of fruit from the basket?  Compute the answer by expanding 
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and then verify the answer by actually listing all possibilities, e.g. 
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, so there are10 ways to select 3 
pieces of fruit: abc, abd, abf, acd, acf, adf, bcd, bcf, bdf and cdf.
With this simple model to guide us, let's consider a more complicated counting problem. Suppose our basket contains two apples along with the banana, cantaloupe and date. If the apples were distinct, one red and one green, we would simply replace the apple enumerator
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, the red and green apple enumerators and then proceed as above. Thus for the answers to our counting problems, we would look to the expansion of 
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 But, what if the apples were identical - say both red apples? If we were to replace 
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, then terms like 
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would occur twice (treating the two apples as distinct) and, if we only included one of the 
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factors, terms like 
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which correspond to selections including two apples would be left out.  What to do?  Well, what we want to do is to adjust the apple enumerator to reflect the possibility of selecting 0, 1 or 2 apples, each in only one way. If we look at our first attempt, replacing 
[image: image30.wmf](

a

0

+

a

1

)

by 
[image: image31.wmf](

r

0

+

r

1

)

2

,

we observe that, since 
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it clearly counts selection just one apple twice. Thus, it seems that what we want to do will be accomplished by replacing 
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Worksheet #1.  Consider a fruit basket containing two red apples, one banana, and one cantaloupe.
1. By hand or on the TI-89, expand 
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and by direct listing, verify that all possible ways of selecting some fruit from the basket are represented correctly. 
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2. Replace all variables by x in the above expression to get 
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and expand it by hand or on the TI-89. 
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3. Verify that the coefficient of x3 is indeed the number of ways that one may select 3 pieces of fruit from this basket. One banana and 2 apples, 1 cantaloupe and 2 apples and one of each kind are the three ways to select 3 pieces of fruit.
4. Explain why substituting 1 for x gives that (1+1+1)(1+1) 2 = 12 is the total number of possible selections of fruit from this basket. Substituting 1 for x in the expanded expression give the sum of the coefficients; that is the number of ways to select 4 pieces plus the number of ways to select 3 pieces plus … plus the number of ways to select no pieces.  
5. Assume that there are two each of the fruit (apples, bananas, and cantaloupes).  Give the enumerator for the different ways to select r pieces of fruit from this basket.  
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Group Work. Work through the following problem assigning each part as group work and discussing each part before going on to the next part.

Problem #1. Consider a fruit basket containing three each of apples, bananas, cantaloupe and dates.

· Find the enumerator for each kind of fruit, replace all variables by x and write down the generating function (as a product) for selecting r pieces of fruit from this basket. Let g(x) denote this generating function. 
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· Expand this product on the Ti89 or by hand.
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· Factor 
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and rewrite 
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in terms of powers of the factors. Then expand each of these powers using the binomial theorem.  
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and expanding gives the left hand expression for g below.
· Show that 
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 with the understanding that 
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 The right hand side is obtained by simply multiplying out the left hand product and collecting terms.
· Interpret j in the above formula as the number of kinds of fruits in a selection that appear more than once. Show, by directly listing all possibilities, that 
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does count all of the ways that one may select 3 pieces of fruit from the basket. If j=0 we get 
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or the number of ways that we can select 3 different fruits with no pairs. If j=1, 
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: we select one pair in 4 ways and then one more piece of fruit in 4 ways to get 16 ways to select two of one kind and one of an another (12 ways) or three of the same kind (4 ways).  If j>1, 
[image: image53.wmf]4

3

-

2

j

æ

è

ç

ö

ø

÷

=

0

.
· Show, by listing all possibilities, that 
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does count all of the ways that one may select 7 pieces of fruit from the basket.  If j=2, 
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counts all selections 2 or 3 of two different types:  3, 3 and 1 in 6x2=12 ways and 3,2,1,1 in 4x3=12 ways.  If j=3, 
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counts the 12 ways to choose 3 of one type and 2 each of two other types plus the 4 ways to choose 2 each of three types and 1 of the remaining type.
Worksheet #2.

Consider a fruit basket containing four each of apples, bananas, cantaloupe and dates. Give the enumerator (as a product) for each of the following counting problems.  After you have set up each problem go back and simplify each of the generating functions.

Finally, compute the coefficients for the terms in the expansions of each function by hand or on the TI-89. 

1. With no special conditions. 
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2. In selecting fruit from the basket, you must select at least one of each kind of fruit.    
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3. Explain why the coefficients for this g(x) are the same as the coefficients of the g(x) in  Problem #1. Select one of each kind of fruit first and now you have 3 of each type to select in any way.                                       

4. In selecting fruit from the basket, you must select an odd number of each kind of fruit. 
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5. In selecting fruit from the basket, you must select an even number of each kind of fruit.    
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Part II:  Counting with the Great Enumerator.

Consider our fruit basket again and suppose that it contains 5 apples. Then the apple enumerator is 
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. In general, if the basket contains m apples the apple enumerator is 
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. What if we wish to consider a basket with an unlimited supply of apples?  In this case the natural choice for enumerator is the infinite polynomial 
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. This leads to a natural question: ``Can we do algebra with infinite polynomials?" The answer is yes with such operations as addition and multiplication being defined exactly as they are in the finite case. For example, consider our basket with an unlimited supply of apples and one banana. The generating function for selecting fruit from this basket is either 
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 depending on whether we wish the terms to represent the actual choices for selecting r pieces of fruit or simply the number of such choices.

Let us consider 
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 first. Multiplying out term by term

we get: 
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We relate these two expansions by observing that, for 
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represent the two ways that one may select m pieces of fruit from this basket.

Now let's suppose that the basket affords an unrestricted supply of both apples and bananas.  Again we have infinite polynomials modeling this case: 
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Expanding the first product and grouping by the sum of the exponents, we get:
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Expanding 
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Thus, for example, from our basket we may select 5 pieces of fruit in 6 ways. Using the first model, we identify the six ways as: 5 apples, 4 apples and 1 banana, 3 apples and 2 bananas, 2 apples and 3 bananas, 1 apple and 4 bananas and 5 bananas.

It is clear that, if we wish to pursue the investigation of unrestricted selections, we are going to have to become very comfortable with the multiplication of infinite polynomials; in particular with products involving the enumerator 
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. This particular enumerator is so useful that we will call it the great enumerator. One product involving this enumerator that is particularly interesting is:
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Thus, we may identify 
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 We will often use this simpler notation for the great enumerator.

Group Work.  Work through the following problem assigning each part as group work and discussing each part before going on to the next part.

Problem #2.  Let 
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 denote an arbitrary infinite polynomial and consider the product: 
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1. What is the coefficient of 
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in the expansion of this product?
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. So the coefficient of xm is 
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2. Use this answer to compute the coefficient of xm in 
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Since ai=1 for all i, the coefficient of xm is (m+1).

3. Use the previous two answers to compute the coefficient of 
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4. Since ai=(i+1) for all i, the coefficient of xm is     
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5. Use this answer to compute the number of different 12-fruit baskets that can be made up using apples, bananas and cantaloupe.

The coefficient of x12 in 
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It is clear that what we need is the general formula for the coefficient of 
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 for all values of n.  To put this in the context of the other counting formulas that we are all familiar with, consider the basic counting formulas in the following way: you are to select r objects from an n-set subject to any combination of the following two options: the selection is either ordered or unordered and either repeats are permitted or repeats are not permitted.  We organize this in the following table with the standard formulas included. 

	Number of ways to select r items from an n-set
	Repeats permitted
	Repeats not permitted

	Ordered
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Organized this way we see that there is an important counting formula missing and that formula is for the coefficient of 
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 It is natural to ask: Why is this counting formula skipped in the high school curriculum? The three obvious possibilities: no useful or interesting problems exist or no simple formula exists or a simple formula exists but is very hard to justify.  We will show that none of these objections is valid.

As you just showed in working Problem #2 above: the coefficient of 
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, we may conjecture that the general formula for the coefficient of 
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.  This is indeed the correct formula.  There are several ways to see this.  One way to see this is based on an understanding of Pascal's triangle and the observation made in part 1 of Problem 2. In that problem you showed that multiplying 
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Now consider Pascal’s triangle. We see at once that the numbers in right hand diagonal are the coefficients of 
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.  We have indicated that the sum of the first 5 entries of the 3rd diagonal equals the 5th entry in the 4th diagonal.  Now the sum of the first 6 entries of the 3rd diagonal equals 35 (the sum of the first 5) plus 21. But by the structure of Pascal’s triangle 35+21=56, the 6th entry in the 4th diagonal.  Inductively the sum of the first r entries in the 3rd diagonal equals the rth entry in the 4th diagonal.  So the coefficient of 
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is the rth entry in the 4th diagonal of Pascal’s triangle.  A similar argument shows that in general the coefficient of 
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There is a beautiful symmetry here: the rth row of Pascal’s triangle corresponds to the expansion of  
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while the rth diagonal of Pascal’s triangle corresponds to the expansion of 
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Now that we have established that the number to fill the empty box in the table is the coefficient of xr in the expansion of 
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which in turn equals 
[image: image139.wmf]r

+

(

n

-

1

)

n

-

1

æ

è

ç

ö

ø

÷

, we can use our algebra skills to solve very many different kinds of counting problems.  There are two important algebraic techniques that we need and we start by quickly reviewing them. 

The first technique is to replace the enumerator for selecting from a set of m identical items 
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Expanding the product 
[image: image141.wmf](

1

-

x

)

(

1

+

x

+

x

2

+

¼

+

x

m

)

 yields 
[image: image142.wmf](

1

-

x

m

+

1

)

; hence we may write 
[image: image143.wmf](

1

+

x

+

x

2

+

¼

+

x

m

)

 as the quotient 
[image: image144.wmf]1

-

x

m

+

1

1

-

x

.


To illustrate the usefulness of this formula, we return to Problem 1: Consider a fruit basket containing three each of apples, bananas, cantaloupe and dates. You computed the generating function for this problem to be 
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Expanding each term we get 
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Hence the coefficient of xr is:
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where again the binomial coefficient 
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Checking this against the previously computed values, the coefficient of x3 is simply 20 from the first term, the remaining terms are all 0; the coefficient of x7 is 120 – 80 + 0 - 0 + 0 = 40; the coefficient of x12 is 455 – 4x165 + 6x35 – 4x1 + 0 = 1; the coefficient of x13 is 560 – 4x220 + 6x56 – 4x4 + 0 = 0; and the coefficient of xr for all larger values of r will be 0.
In the next worksheet you should apply this basic strategy: write the enumerator for each type of item as a quotient; multiply out the product of the numerators; write the generating function as the sum of monomials over powers of (1-x) ; write the coefficient of xr as a linear combination of binomial coefficients.  

Worksheet #3.
1. Write the enumerators for each of the fruits in a basket containing 5 apples, 5 bananas and an unlimited supply of cantaloupe. 
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2. Rewrite each of these as a quotient over (1-x). 
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 EMBED Equation.DSMT4  [image: image162.wmf](

1

-

x

6

)

(

1

-

x

)

 and 
[image: image163.wmf]1

(

1

-

x

)

.


3. Compute the product and write it in terms of monomials over a power of (1-x). 
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4. Write the coefficient of xr as a linear combination of binomial coefficients. 
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5. Compute the number of r-selections for r = 3 and verify it by direct counting. The formula gives 
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 as the number of 3-selections. By direct counting we have 1 way to select one of each type, 6 ways to select two of one type and one of another and 3 ways of selecting all three of the same type; for a total of 10. 
6. Compute the number of r-selections for r = 6 and explain what the first term counts and how the second term corrects for this. The formula gives 
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 as the number of 6-selections. The 28 includes the selection consisting of 6 apples and the selection consisting of 6 bananas; the second term subtracts off these two selections.
7. Compute the number of r-selections for r = 7 and explain what the first term counts and how the second term corrects for this. The formula gives 
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 as the number of 7-selections. The 36 includes all selections involving 6 or more apples or selecting 6 or more bananas; the second term subtracts off these 6 cases:  7 apples, 6 apples and a banana, 6 apples and a cantaloupe; 7 bananas, 6 bananas and an apple, 6 bananas and a cantaloupe.
8. Compute the number of r-selections for r = 12 and explain what correction the 12th term gives. The formula gives 
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 as the number of 12-selections. To understand the third term, we must realize that the second term is really two terms: one of the 
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 corrects for all selections containing 6 or more apples while the other 
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 corrects for all selections containing 6 or more bananas. So the selection of 6 apples and 6 bananas has been over corrected and last term adjusts for this. 
9. For r in the range 0 to 5, the formula for the number of ways of selecting r pieces of fruit from this basket is simply 
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. In the range 6 to 11, the second term comes into play and, for 12 and beyond, all three terms are involved. Write down the piecewise quadratic formula for the number of ways to select r pieces of fruit from this basket:   

	Range for r
	g(r)

	0 to 5
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10. Did you find your last entry surprising?  Can you explain why it should be expected?  If you have a complete listing of all possible r-selections, adding one cantaloupe to each selection will give a complete list of all (r+1)-selections that include one cantaloupe any new (r+1)-selection would have to consist of apples and bananas only. But if 
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, there are no r-selections consisting of apples and bananas only. So if 
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, the number of r-selections equals the number of (r-1)-selections.
There are two more algebraic tools that we will need: substitution and partial fractions.  From our basic formula 
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 we may get others by simply substituting another value for x. One very useful substitution is –x for x: 
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Another useful substitution is x2 for x: 
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The second important algebraic tool is that of “partial fractions.”  We illustrate this with a very simple example. Suppose that you have infinite supplies of apples and bananas and you want to count the number of r-selections with an even number of apples. The generating function for this counting problem is   
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Factoring 
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, we may rewrite f:
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. We know the coefficient of xr for both 
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. To do this, we:

1. Replace each question mark by a polynomial with indeterminate coefficients of degree one less than the corresponding denominator 
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2. Put this over a common denominator 
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3. Setting this quotient equal to the original quotient gives a system of equations in the indeterminate coefficients:  
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gives the system  
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4. Solving this system, gives 
[image: image194.wmf]h

=

1

4

;

j

=

3

4

;

k

=

-

1

4

. Hence 
[image: image195.wmf]f

(

x

)

=

1

(

1

+

x

)

(

1

-

x

)

2

=

1

4

1

(

1

+

x

)

+

3

-

x

(

1

-

x

)

2

é

ë

ê

ù

û

ú

=

1

4

1

(

1

+

x

)

+

3

1

(

1

-

x

)

2

-

x

(

1

-

x

)

2

é

ë

ê

ù

û

ú


We may now write down the formula for the coefficient of r in the expansion of f: 
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Compute the first few values and check them by direct computation.

You will need all of these tools to solve the counting problem on the next worksheet.
Worksheet #4. Consider a fruit basket containing an unlimited supply of apples, an unlimited supply of bananas and cantaloupe. How many ways can you select 19 pieces of fruit given that you must select an even number of apples?
1. Give the enumerator for selecting an even number of apples and write it as a quotient.                                                                                                                This enumerator is 
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2. Give the generating function for selecting an even number of apples and any number of bananas and cantaloupe and write it as a quotient with a product linear factors in the denominator.                              
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3. Separate it by the method of partial fractions.
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The system of equations is then 
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4. Write the generating function in terms of these partial fractions. 
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5. Compute the formula for the coefficient of xr in the expansion of the generating function. 
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6. Evaluate it at r =19.  
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A little more difficult: Consider a fruit basket containing an unlimited supply of apples, an unlimited supply of bananas and 10 cantaloupe. How many ways can you select 19 pieces of fruit given that you must select an even number of apples?

 Replacing 
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 gives the new generating function: 
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 Multiplying the previous generating function by 
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 gives the generating function for this problem: 
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The formula for the coefficient of xr is then: 
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and the coefficient of x19 is 
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In developing our algebraic counting techniques, we have used selecting fruit from limited and unlimited supplies of several kinds of fruit.  But, of course these methods are applicable to a large variety of counting problems. We end this workshop by considering several different applications.

Just as the formulas for permutations and combinations keep cropping up, the formula for unordered r-selections, repeats permitted, from an n-set occurs in many counting problems:  how many different bags of 15 candies selected from 5 flavors are possible?  Here r=15, n=5 and the number of possible bags of candy is 
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. If we insist that no bag will contain more than 4 of any one flavor, the problem is a bit more complicated: the enumerator for candies of each flavor is 
[image: image213.wmf]1

-

x

5

1

-

x

and the generating function is 
[image: image214.wmf]f

(

x

)

=

(

1

-

x

5

)

5

(

1

-

x

)

5

=

1

-

5

x

5

+

1

0

x

1

0

-

1

0

x

1

5

+

5

x

2

0

-

x

2

5

(

1

-

x

)

5

. Then the coefficient of xr is 
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 and the coefficient of x15 is 
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. We could also insist that each bag contain at least 2 of each type of candy: the enumerator for candies of each flavor is then 
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and the generating function is 
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 and the coefficient of x15 is 
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This last problem is restricted enough that it can easily be solved by direct counting: there is only one bag with the pattern of flavors 3,3,3,3,3; there are 20 bags with 4 of one flavor, 3 each of three flavors and 2 of the last flavor. (Pick the flavor for 4 in 5 ways and the flavor for 2 in 4 ways.) Finally there are 30 bags with 4 each of two flavors, 3 of one flavor and 2 each of the remaining two flavors. (Pick the 2 flavors for 4 candies in 10 ways and then the flavor for 3 candies in 3 ways.)  It is always instructive to solve a problem in two ways and compare the answers! 
Consider the following question: How many non-negative integral solutions are there for the equation 
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 If you think about it for a few minutes you will realize that this is just the previous candy problem in disguise: let m1 denote the number of candies of the first flavor, m2 the number of candies of the second flavor, and so on.  In general, all of the variations that we discussed with the fruit selection problems can be included here: Find the number of solutions to 
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, m2 even, m3 greater than 3, and so on.  In general, a good way to deal with counting problems like those we have considered is to reformat them in this numerical setting before solving them. It is a strategy that you might use on the last worksheet.

In this final application of these algebraic methods, we find the formula for the sum of the first n cubes, 1+8+27+…+n3.  Our strategy for solving this problem is based on the following observations:

· If we can find the generating function for the cubes themselves, 
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, we can multiply by 
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, the generating function for the sum of the cubes.

· r3 is a polynomial of degree three and we know the generating functions for the polynomials of degree three that are binomial coefficients.

· Using the method of undetermined coefficients, we can write r3 as a sum of binomial coefficients and hence its generating function as a sum of known generating functions.

We start by choosing the three consecutive binomial coefficients with r as a common factor and then writing r3 as a linear combination of them:  
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 gives the system 
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 Its solution: 
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Expanding these binomial coefficients as a polynomial gives 
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as the formula for the sum of the first r cubes.  One easily verifies directly that this works for the first few cases:  
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Worksheet #5.

Problem 1.  Find all solutions to 
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under each of the following sets of conditions:

· The mi are non-negative integers.

The generating function is 
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· For each i, mi is an integer in the range 
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Giving 
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Hence the coefficient of xr is 
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· For each i, mi is an integer in the range 
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The generating function is 
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 So by the binomial theorem
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· The mi are non-negative integers and m2 and m4 are even.

The generating function is 
[image: image251.wmf]f

(

x

)

=

1

(

1

-

x

2

)

2

(

1

-

x

)

2

=

1

(

1

+

x

2

)

2

(

1

-

x

)

4

.


Separated by partial fractions:
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Substituting –x for x in the expansion of 
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· The mi are non-negative integers and
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The algebraic trick here is to solve the new problem, 
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, where m1, m2 and p are all nonnegative and p is even.  Then let
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 This is now the problem on Worksheet #4.  In the solution, we showed that the coefficient of xr is
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· The mi are non-negative integers and 
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The algebraic trick here is to solve the new problem, 
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Partial fractions equation: 
[image: image265.wmf]A

+

B

x

+

C

x

2

+

D

x

3

(

1

+

x

)

+

E

(

1

-

x

)

3

=

x

(

1

+

x

)

(

1

-

x

)

4

.



The partial fractions decomposition: 
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The coefficient of xr: 
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Problem 2. You have five dozen Easter eggs to dye with six colors; compute the number of ways to do this under each of the following sets of conditions:

· No additional conditions. 
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· There are no more than a dozen of any one color.

The generating function: 
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The coefficient of xr:   
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The coefficient of x60:   
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· There are at least 6 of each color. 
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· There are at least 6 but no more than 12 of each color.

The generating function: 
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The coefficient of xr: 
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 The coefficient of x60:   
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· There are more red eggs than blue and yellow eggs together.

The best way to solve this is to convert it into the equivalent numerical problem: find the number of solutions to 
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 . We consider the new problem: find the number of solutions to 
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The generating function: 
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The partial fractions decomposition: 
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The coefficient of xr:   
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The coefficient of x60:   
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Problem 3.  Under each of the sets of conditions listed below, compute the number of ways to distribute102 golf balls among 7 baskets numbered 1 to 7. (If the baskets are indistinguishable, there is just one way to put 18 in one basket and 14 in each of the others. Our methods will count seven distributions of this type, one for each way to choose the basket to get the 18.)

· No additional conditions. 
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Each basket has a capacity of 20 balls. The generating function: 
[image: image288.wmf]f

(

x

)

=

1

-

7

x

2

1

+

2

1

x

4

2

6

-

3

5

x

6

3

+

3

5

x

8

4

-

2

1

x

1

0

5

+

7

x

1

2

6

-

x

1

4

7

(

1

-

x

)

7

.


The coefficient of xr: 
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 The coefficient of x102:   
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· Each basket must contain at least 10 balls. The generating function is 
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· Exactly 3 of the baskets must contain an even number of balls and the remaining baskets must contain an odd number of balls. This problem illustrates that it always pays to stop and think before applying these complicated formulas. Exactly 4 of the baskets must contain an odd number of balls. We may select these baskets in 
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Problem 4.  Find the formula for the sum of the first r squares. We have that 
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. Hence the generating function for the squares is 
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and then the generating function for the sum of squares is 
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 Hence the coefficient of xr is 
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Worksheet #1.  Consider a fruit basket containing two red apples, one banana, and one cantaloupe.
1. By hand or on the TI-89, expand 
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and by direct listing, verify that all possible ways of selecting some fruit from the basket are represented correctly. 

2. Replace all variables by x in the above expression to get 
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and expand it by hand or on the TI-89. 

3. Verify that the coefficient of x3 is indeed the number of ways that one may select 3 pieces of fruit from this basket. 

4. Explain why substituting 1 for x gives that (1+1+1)(1+1) 2 = 12 is the total number of possible selections of fruit from this basket. 
Assume that there are two each of the fruit (apples, bananas, and cantaloupes).  Give the enumerator for the different ways to select r pieces of fruit from this basket.

Worksheet #2.

Consider a fruit basket containing four each of apples, bananas, cantaloupe and dates. Give the enumerator (as a product) for each of the following counting problems.  After you have set up each problem, go back and simplify each of the generating functions.

Finally, compute the coefficients for the terms in the expansions of each function by hand or on the TI-89. 

1. With no special conditions. 

2. In selecting fruit from the basket, you must select at least one of each kind of fruit.    

3. Explain why the coefficients for this g(x) are the same as the coefficients of the g(x) in Problem #1. 

4. In selecting fruit from the basket, you must select an odd number of each kind of fruit.
5. In selecting fruit from the basket, you must select an even number of each kind of fruit. 

Worksheet #3.
1. Write the enumerators for each of the fruits in a basket containing 5 apples, 5 bananas and an unlimited supply of cantaloupe. 

2. Rewrite each of these as a quotient over (1-x). 

3. Compute the product and write it in terms of monomials over a power of (1-x). 

4. Write the coefficient of xr as a linear combination of binomial coefficients. 

5. Compute the number of r-selections for r = 3 and verify it by direct counting. 
6. Compute the number of r-selections for r = 6 and explain what the first term counts and how the second term corrects for this. 
Worksheet #3 continued.
7. Compute the number of r-selections for r = 7 and explain what the first term counts and how the second term corrects for this. 
8. Compute the number of r-selections for r = 12 and explain what correction the 12th term gives. 
9. For r in the range 0 to 5, the formula for the number of ways of selecting r pieces of fruit from this basket is simply 
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. In the range 6 to 11, the second term comes into play and, for 12 and beyond, all three terms are involved. Write down the piecewise quadratic formula for the number of ways to select r pieces of fruit from this basket:  

	Range for r
	g(r)

	0 to 5
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	6 to 11
	

	12 to 
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10. Did you find your last entry surprising?  Can you explain why it should be expected? 

Worksheet #4. Consider a fruit basket containing an unlimited supply of apples, an unlimited supply of bananas and cantaloupe. How many ways can you select 19 pieces of fruit given that you must select an even number of apples?
1. Give the enumerator for selecting an even number of apples and write it as a quotient. 
2. Give the generating function for selecting an even number of apples and any number of bananas and cantaloupe and write it as a quotient with a product of linear factors in the denominator. 

3. Separate it by the method of partial fractions.

4. Write the generating function in terms of these partial fractions. 

5. Compute the formula for the coefficient of xr in the expansion of the generating function. 

6. Evaluate it at r =19. 
A little more difficult: Consider a fruit basket containing an unlimited supply of apples, an unlimited supply of bananas and 10 cantaloupe. How many ways can you select 19 pieces of fruit given that you must select an even number of apples?

Worksheet #5.

Problem 1.  Find all solutions to 
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under each of the following sets of conditions:

· The mi are non-negative integers.

· For each i, mi is an integer in the range 
[image: image306.wmf]i

£

m

1

£

i

+

2

.

· For each i, mi is an integer in the range 
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· The mi are non-negative integers and m2 and m4 are even.

· The mi are non-negative integers and 
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· The mi are non-negative integers and 
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Problem 2. You have five dozen Easter eggs to dye with six colors.  Compute the number of ways to do this under each of the following sets of conditions:

· No additional conditions.

· There are no more that a dozen of any one color.

· There are at least 6 of each color.

· There are at least 6 but no more than 12 of each color.

· There are more red eggs than blue and yellow eggs together.

Problem 3.  Under each of the sets of conditions listed below, compute the number of ways to distribute102 golf balls among 7 baskets numbered 1 to 7. (If the baskets are indistinguishable, there is just one way to put 18 in one basket and 14 in each of the others.  Our methods will count seven distributions of this type, one for each way to choose the basket to get the 18.)

· No additional conditions.

· Each basket has a capacity of 20 balls.

· Each basket must contain at least 10 balls.

· Exactly 3 of the baskets must contain an even number of balls and the remaining baskets must contain an odd number of balls.

Problem 4.  Find the formula for the sum of the first r squares.
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