 WORKSHOP #2

The Complex Numbers 

Abstract: In this workshop we explore the arithmetic, geometry and algebra of complex numbers with a little trigonometry thrown in. We then use the linear  and conjugate linear functions of a complex variable to investigate and classify the similarities and congruences of the Euclidean plane. We start from the beginning; so, for those already familiar with the complex numbers, the first few worksheets will simply be a review.  

Format: We start with a description of the workshop material as we presented it formatted as a single narrative.  In an actual presentation, some material was simply present verbally, some in the form of projected transparencies (or projected computer screen) and some, particularly the problems, was distributed in handouts.  The main advantage of having the material in Word is that the presenter can decide the best way to divide up the material for any given audience, producing their own slides and worksheets. In most cases, the worksheets will be much the same.  The worksheets that we used are attached to the end of this file. 
Note: The figures in this workshop were all constructed using Geometer’s Sketchpad. If you would like those original GSP files, send a request by email to jegraver@syr.edu. 

Introduction. 
Why consider complex numbers?  The original motivation came from the need to solve quadratic equations. In fact all of our number systems were developed to solve larger and larger classes of problems.

For example, if n and m are natural numbers, meaning they are a part of the set [image: image1.wmf] and n > m. Then the equation [image: image2.wmf] has a unique solution fro [image: image3.wmf] also a natural number. But if we don’t want to restrict [image: image4.wmf], it is necessary to enlarge our number system from [image: image5.wmf]to [image: image6.wmf]., the set of integers. However we must enlarge our number system even more if we wish to solve a linear equation of the form [image: image7.wmf]where n and m are integers.   This equation will have a solution in [image: image8.png]


 if and only if m is a factor of n.

So, to solve the general linear equation, we once again we enlarge the number system, this time to the rational numbers, [image: image9.wmf]. The properties of the rational numbers ensure that a general linear equation[image: image10.wmf] has a solution within the system of rational numbers whenever [image: image11.wmf].  The specific solution is [image: image12.wmf].

The next step is to consider quadratic equations. But the simple quadratic equation [image: image13.wmf]does not have a solution in [image: image14.wmf], so we enlarge our system of numbers again to the system of real numbers, [image: image15.wmf] But, the equation [image: image16.wmf] has no solution in the system of real numbers [image: image17.wmf]. This is getting tiresome, but it is important, so we enlarge our number system again to the complex numbers [image: image18.wmf]. To arrive at the system of complex numbers, we introduce the imaginary unit [image: image19.wmf] which has the property that [image: image20.wmf] The nice thing is that this enlargement process ends here: All solutions to polynomial equations are complex numbers.  This fact is called the Fundamental Theorem of Algebra. 

	Special Note: the complex numbers can be extended to even larger number systems called the quaternions and the octonions. The octonions are used by physicists in the development of string theory. A nice description of these larger number systems is given in  “The Strangest Numbers in String Theory,” Scientific American, May 2011, pages 60-65. 




In this workshop we explore the arithmetic, geometry and algebra of complex numbers with a little trigonometry thrown in.  We start from the beginning; so, for those already familiar with the complex numbers, the first few worksheets will simply be a review.  

The Complex Plane.

The complex numbers are the set of numbers of the form x+yi where x and y are real numbers and i denotes the square root of -1.  We denote this number system by[image: image21.png]


.
Just as we visualize the real numbers as points on the real line, we will visualize the complex numbers as points on the complex plane. We start with the usual coordinate plane. The x-axis will be identified with the real line. The y-axis will represent the multiples of i and is called the imaginary axis.  The complex number x+yi will be identified with the point that has coordinates (x,y). 

Worksheet #1. The Complex Plane
	[image: image22.png]





Plot the following complex numbers:

a = -7

b = 5i
c = 7+5i
d = 8-3i
e = -8+3i
f = -7-5i
Identify the plotted complex numbers:

g = 7
h = -8i
j =  -5+9i
k = 3+4i
r = 7-6i
s = -3-9i
One very useful way to think of a complex number z is as the vector from the origin to the point z.  With that interpretation in mind, we introduce the length or absolute value of the complex number its the length when thinking of it as a vector: if [image: image23.wmf], then [image: image24.wmf].  We use the absolute value notation since this is the absolute value for the   real number.

Compute the absolute value for each of the complex numbers on Worksheet #1.

Complex Arithmetic – Addition

We add two complex numbers [image: image25.wmf]and [image: image26.wmf] together by adding the real parts (the [image: image27.wmf] and the [image: image28.wmf]in this case) and the imaginary parts ([image: image29.wmf] and [image: image30.wmf]) separately.  So the sum will look like [image: image31.wmf].  

Examples: 
[image: image32.wmf];



[image: image33.wmf]
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If we interpret the complex number [image: image35.png]a+bi



as the vector in the complex with initial point (0,0) and terminal point (a,b), addition of complex numbers becomes vector addition in the complex plane. Geometrically, if z and w are complex numbers then z+w completes a parallelogram with 0, z and w. 

If we fix a complex number, say for example z=3+5i, we may associate to z, the translation [image: image36.wmf] that maps w onto z+w; that is the translation that moves each complex number up five units  and three units to the right. 

Worksheet #2. Addition as a Translation

Give a geometric description of each of the following translations;


[image: image37.wmf];  moves each point three units to the right.


[image: image38.wmf]; moves each point three units straight up.

[image: image39.wmf]; moves each point one unit to the right and down one unit.

[image: image40.wmf]; maps each point ½ unit to the right and ½ unit up.

[image: image41.wmf]; the identity translation – each point is fixed.
Give the [image: image42.wmf]formula for each of the following translations: 


Find z where[image: image43.wmf]translates each point down 4 units;  [image: image44.wmf]
Find z where[image: image45.wmf]translates each point down 4 units and 5 units to the left;[image: image46.wmf]

Find z where[image: image47.wmf]moves each point [image: image48.wmf]units along the positive 45o line: [image: image49.wmf]

Find z where[image: image50.wmf]moves each points 3 units along the positive 45o line: [image: image51.wmf]
Complex Arithmetic – Multiplication

When we multiply two complex numbers [image: image52.wmf] and [image: image53.wmf] we use the same distributive properties we would when multiplying polynomials.  However in this case we will also keep in mind that [image: image54.wmf] Multiplying these two terms we get 

[image: image55.wmf]
Worksheet #3. Complex Arithmetic I

Carry out the following computations:

1.  [image: image56.wmf] 


12+13i
2.  [image: image57.wmf] 


10

3.  [image: image58.wmf] 


-4+12i
4.  [image: image59.wmf] 


36+8i
5.  [image: image60.wmf]

52+72i
6. [image: image61.wmf]

[image: image62.wmf]
7. [image: image63.wmf]

[image: image64.wmf]
8.  [image: image65.wmf]

[image: image66.wmf]
9.  [image: image67.wmf]
[image: image68.wmf]
Interpreting multiplication as a transformation is rather complicated. So we will start with a few simple cases.  First consider the transformation[image: image69.wmf], that multiplies every complex number by 2.  Every vector is doubled in length and [image: image70.wmf]is the dilation by a factor of 2 about the origin. For any complex number [image: image71.wmf]we define [image: image72.wmf]by [image: image73.wmf].  The last two computations on Worksheet #3 show the important fact that |wz|=|z||w| for all complex numbers. Hence [image: image74.wmf]multiplies all distances by |w|, the length of w. When w is a positive real number [image: image75.wmf]is the dilation centered at the origin with magnification m. The dilation [image: image76.wmf]actually stretches (or shrinks) all distance by the factor m. Transformations that alter all distances by the same factor map geometric figures onto similar figures and are called similarities. Dilations are just one class of similarities. Transformations that preserve distances map geometric figures onto congruent figures and are called congruences.  Translations are congruences. 

Now consider the transformation [image: image77.wmf]; this maps each vector onto its negative and is easily recognized as the half-turn (180o rotation) about the origin.  How does [image: image78.wmf] map the complex plane onto itself?  Since |i|=1, it should be a congruence.  Checking a few values ([image: image79.wmf];[image: image80.wmf];[image: image81.wmf];[image: image82.wmf]), we conclude that [image: image83.wmf] is the 90-degree counterclockwise rotation about the origin. What about [image: image84.wmf]?  We may think of multiplying z by 2i as first multiplying by i and then by 2: [image: image85.wmf]. Hence, [image: image86.wmf]; in other words, [image: image87.wmf] rotates the plane 90 degree counterclockwise about the origin and dilates by the factor 2.  In general, [image: image88.wmf]will split into a rotation part and a dilation part. More to the point, the complex number w itself will split: [image: image89.wmf]; [image: image90.wmf] is a positive real number while[image: image91.wmf] is a complex number of length 

	[image: image92.png]a+bi







one. To see exactly how a complex number of length one corresponds to a rotation, let [image: image93.wmf]be a complex number of length one; that is, where[image: image94.wmf] Considering the right triangle with vertices 0, z and the projection of z on the x-axis, we conclude that, for some angle [image: image95.wmf]between 0 and 360, [image: image96.wmf]and [image: image97.wmf].  So a complex number of length 1 has the form [image: image98.wmf]. Hence: 

Any complex number [image: image99.wmf] can be written in the form [image: image100.wmf] , where r is a positive real number and [image: image101.wmf] is the unit vector that makes a counterclockwise angle of [image: image102.wmf]degrees with the positive real axis.  

We have illustrated this for z in the first quadrant; similar pictures can be drawn for z in any other quadrant. 
Now returning to multiplication, let [image: image103.wmf]and [image: image104.wmf]. Then  

[image: image105.wmf]
We should recognize the sine and cosine formulas for the sum of two angles; hence 

[image: image106.wmf].

So it is clear that multiplying z by w, rotates it by the angle [image: image107.wmf] and stretches its length by the factor r.
Worksheet #4. The Trigonometric Representation of Complex Numbers
	[image: image108.png]





Plot each of these complex numbers and compute its absolute value and angle of rotation.

1. [image: image109.wmf]
[image: image110.wmf]and [image: image111.wmf]
2. [image: image112.wmf] 

[image: image113.wmf]and [image: image114.wmf]
3. [image: image115.wmf]
[image: image116.wmf]and [image: image117.wmf]
Identify and plot each of the complex with these absolute values and angles.

4.[image: image118.wmf]and[image: image119.wmf]
     [image: image120.wmf]
5. [image: image121.wmf]and [image: image122.wmf]
     [image: image123.wmf]
6.  z = 6 and  [image: image124.wmf]
     [image: image125.wmf]
Complex Conjugation 

There is one more very important transformation of the complex plane, the reflection through the x-axis called conjugation: for [image: image126.wmf] we define [image: image127.wmf], the conjugate of z by [image: image128.wmf]. The following two properties of conjugation are easy to see geometrically: 

[image: image129.wmf] and [image: image130.wmf].  There are several other properties which you will verify algebraically on the next worksheet. 

Worksheet #5. The Properties of Complex Conjugation

Verify each of the following equalities by direct computation.

1. [image: image131.wmf]
2. [image: image132.wmf]
3. [image: image133.wmf]
4. [image: image134.wmf]
5. [image: image135.wmf]
6. [image: image136.wmf]
7. [image: image137.wmf]
8. If [image: image138.wmf] [image: image139.wmf] and [image: image140.wmf]
Complex Arithmetic - Division

What about division?  We know that we can't divide by 0 from working with real numbers, so when writing a complex number as a fraction we must always add the condition that the denominator is not zero.  As with real numbers, w=a+bi divided by z=c+di can be represented by the fraction[image: image141.wmf].   Instead of dividing by 2 we may multiply by [image: image142.wmf], the multiplicative inverse of 2.  We may do the same for division by z. Item 6 on the last worksheet identifies the multiplicative inverse of z as [image: image143.wmf].  Hence [image: image144.wmf]
Worksheet #6. Complex Arithmetic II

Express the following quotients in the form [image: image145.wmf] 

1.  [image: image146.wmf] [image: image147.wmf]
2.  [image: image148.wmf] = i
3.   [image: image149.wmf] [image: image150.wmf]
4.   [image: image151.wmf] [image: image152.wmf]
Complex Arithmetic on the TI Calculators

The TI-84 and TI-89 calculators are able to do complex arithmetic using the same commands as for real arithmetic.  To access this feature you must reset the MODE screen. Both calculators give you the option of the usual (rectangular) format for complex numbers or the polar format.  The latter format uses [image: image153.wmf]to represent [image: image154.wmf].  Proving that this exponential notation is valid is beyond the scope of this workshop. 

Using the rectangular format for complex numbers it might be instructive to check your hand computations on Worksheets 3, 5 and 6.  The commands for “conjugate” and “absolute value” can be found on the CPX submenu of the MATH menu.

Quadratic Equations

Does every complex number have a square root? If a complex number has a square root, how many does it have?

As usual, we say that w is a square root of [image: image155.wmf] if [image: image156.wmf]  If [image: image157.wmf], we see that [image: image158.wmf] squared is z; also [image: image159.wmf] squared equals z.

Since we can compute the square roots of complex numbers, we can solve for the roots of quadratic equations with complex coefficients. The general quadratic has the form: [image: image160.wmf], where a, b and c now represent complex numbers and z a complex variable.  We solve by using the quadratic formula: [image: image161.wmf].  The derivation of this formula over the complex numbers is exactly the same as it is for real quadratic equations.

The Roots of Unity

Of particular interest are the solutions to the equation [image: image162.wmf], where n is a positive integer. Over the reals, this equation has 1 as its only solution when n is odd and 1 and -1 as its only solutions when n is even.  However, over the complex numbers this equation has exactly n distinct solutions. They are called the nth roots of unity and they are particularly easy to describe using the trigonometric form: [image: image163.wmf], for p=0,1,2,…,(n-1). One can also easily see that: 1 and -1 are the roots of 2 and that 1, i, -1 and –i are the 4th roots of unity. On the right in the following figure, we have pictured the 3rd root of unity in blue.                 

	[image: image164.png]309+ ./95]i
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Worksheet #7.  The nth Roots of Unity

1.  Using the values of the trig functions on your calculator, compute the 5th roots of unity and plot them.

2.  Compute the 8th roots of unity and plot them.  

Similarities
The similarities of plane geometry are those transformations of the plane that scale all distances by the same positive real number called the magnification factor; the congruences are the similarities with magnification factor 1.  We can visualize congruences in the way that Euclid did: figure A is congruent to figure B if A can be picked up and placed on top of B matching perfectly.  Instead of picking up figure A we should visualize placing a transparency over A and tracing it.  Then we pick up the transparency and place it on B so that the image of A matches B.  So the motion of the transparency represents the mapping of the entire plane onto itself that takes A onto B. Congruences can be classified as direct if orientation is preserved (the transparency is not turned over) or opposite if orientation is reversed (the transparency is turned over). Similarities may be visualized in the same manner except that the transparency is uniformly stretched or shrunk by the magnification factor before it is placed down. With this mental image we see that a similarity is uniquely determined by its images of any two distinct points and the knowledge as to whether it is direct or opposite: Suppose that the similarity maps p to p* and q to q*.  The magnification factor is the distance between p* and q* divided by the distance between p and q. So we mark p and q on our transparency, stretch or shrink the transparency by the magnification factor, and place the copies of P and q on p* and q*, flipping the transparency over if the similarity is opposite.

Taking the complex plane as a model for the Euclidean plane it is natural to ask what are the complex functions that correspond to the similarities of the plane. The answer is surprisingly simple: complex linear functions of the form[image: image165.wmf], where a and b are complex constants and z is a complex variable correspond to the direct similarities of the plane and complex conjugate linear functions of the form [image: image166.wmf]correspond to the opposite similarities of the plane. We end this workshop by verifying this correspondence and then using it to study the similarities of the plane.

Consider the complex linear function[image: image167.wmf].  If we rewrite a as [image: image168.wmf] we may interpret the function s as first rotating the plane by the angle [image: image169.wmf], then dilating by the factor r and then translating by the vector b. The first and last operations preserve distance, the second magnifies all distances by r, so the combination is a similarity with magnification r and since all three preserve orientation this similarity is direct. The conjugate linear function [image: image170.wmf]has the same three steps preceded by the reflection through the x-axis and hence is an opposite similarity with magnification r. To see that the linear and conjugate linear functions account for all similarities, we argue as follows. Given a similarity s, let s(0)=p and s(1)=q.  Now [image: image171.wmf] is the linear function that maps 0 to p and 1 to q while [image: image172.wmf] is the conjugate linear function that maps 0 to p and 1 to q. Since there is exactly one direct similarity and one opposite similarity mapping 0 to p and 1 to q, [image: image173.wmf]if s is direct and[image: image174.wmf]if s is opposite.

Let us consider several examples. Let [image: image175.wmf] and let’s follow the trajectory of 0:            

	[image: image176.png]iy
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s(0) = 1, s(1) = 1+i, s(1+i) = i, s(i) = 0.  So it seems that [image: image177.wmf]is the 90 degree rotation about [image: image178.wmf]. Next consider[image: image179.wmf]and follow the trajectory of 0: t(0) = 1, t(1) = 2+i, 

t(2+i) = 2+3i, t(2+3i) = 5i, t(5i) = -4+5i, t(-4+5i) = -8+i, t(-8+i) = -15i and so on.
The values seem to be spiraling outward about some point. But what point?  The  center of this “dilating rotation” like the center of a rotation will be a fixed point of the function and hence easily computed. Suppose that c is a fixed point for the linear function [image: image180.wmf].  Then [image: image181.wmf] and solving for c gives [image: image182.wmf]when [image: image183.wmf] (when [image: image184.wmf], there is no fixed point). In our first example,[image: image185.wmf], as we predicted. In the second case, [image: image186.wmf]. Joining i to the points of the trajectory it becomes clear the t rotates each point 45 degrees about i and stretches its distance from i by[image: image187.wmf].

Going the other way we can ask: find the linear equation of the dilating rotation that spirals in about 5 +5i rotating 90 degrees clockwise and shrinking distance by a factor of .8.  The complex number that rotates 90 degrees clockwise and shrinks distance by a factor of .8 is -.8i; So a=-.8i. Then solving [image: image188.wmf]for b, gives [image: image189.wmf]and [image: image190.wmf].  Following the trajectory of 0 we see that indeed the points spiral in toward 5 +5i.
We summarize what we now know about the geometry of linear complex functions:
Consider the linear function [image: image191.wmf], then:


if a=1, s is the translation by the complex number b; 


if [image: image192.wmf], but |a|=1, s is a rotation about the point [image: image193.wmf];

if |a| = [image: image194.wmf], s is a dilating rotation by the factor r about the point [image: image195.wmf].

In the last two case, the angle of rotation is the same as the angle of rotation give by multiplication by a. 

Worksheet #8. Linear Functions.

Describe the direct similarity given by each of the following linear functions.
1. [image: image196.wmf] 

This is the translation 2 units to the right and 2 units down
2. [image: image197.wmf]

This is the half-turn about the point 1-i.
3. [image: image198.wmf]
This is a rotating dilation. The center is the point -2-2i, the angle of rotation is -45 degrees and the dilation factor is [image: image199.wmf].

Find the linear function for each of the following direct symmetries.
4.  The 90-degree counterclockwise rotation about the point -2.



[image: image200.wmf]
5.  The dilation with magnification 1.5 about 2-3i.



[image: image201.wmf]
6. The rotating dilation about i with factor [image: image202.wmf]and angle of rotation 60-degrees counterclockwise.


[image: image203.wmf]
We already think of the simple conjugate linear function [image: image204.wmf]as the reflection

	[image: image205.png]L




 


through the x-axis. It follows that [image: image206.wmf]is the glide reflection of one unit along the x-axis. This is easy to see if we follow the trajectory of a point not on the x-axis: f(i)=1-i, f(1-i)=2+i, f(2+i)=3-i, f(3-i)=4+i, and so on.  But something like[image: image207.wmf] is rather hard to understand. You can idea by plotting the trajectory of 0:   f(0)=1-i,  f(1-i)=1+i,   f(1+i)=3-i,   f(3-i)=3+3i,  f(3+3i)=7-i, f(7-i)=7+7i,  f(7+7i)=15-i and so on. We see that the points of the trajectory alternate between two lines. Since similarities map lines onto lines f must interchange these lines and hence fix their intersection. We easily check that f(-1-i)=-1-i.  So [image: image208.wmf] is a dilating reflection. We have just seen that it has c=(-1-i) as fixed point. We also easily compute the dilating factor: r = |(1+i)| =[image: image209.wmf].  

In general, given the conjugate linear function [image: image210.wmf], the dilating factor |a|

or [image: image211.wmf] To compute the fixed point of s, we apply s twice the get the linear function [image: image212.wmf]. This gives [image: image213.wmf]as the fixed point when the dilating factor is different from 1 (check that this works for the above example). In the case that |a| is different from 1 s is a dilating reflection: dilating from c while reflecting through a line that passes through c.  When b is not 0, then the point [image: image214.wmf]is also on the line of reflection (check this against the above picture to see that it is reasonable). When b is 0, the fixed point is also 0 and the point [image: image215.wmf] is also on the line of reflection. 

When |a|=1 then s is either a reflection or a glide reflection.  For any point p, the 

midpoint of the segment joining p and s(p) is always on the line of reflection; in particular [image: image216.wmf]is on the line of reflection.  Again we summarize 

Consider the conjugate linear function [image: image217.wmf], then:


if |a|=1 and [image: image218.wmf], s is a reflection; 


if |a|=1 and [image: image219.wmf], s is a glide reflection;


if |a|[image: image220.wmf], s is a reflecting dilation with magnification |a|, with center [image: image221.wmf].

In all cases, [image: image222.wmf]is a point on the line of reflection; one of the tricks listed above can be used to find a second point if necessary

Worksheet #9. Conjugate Linear Functions.

Describe the opposite similarity given by each of the following conjugate linear functions.
1.  [image: image223.wmf]
This is the reflection through the horizontal line [image: image224.wmf].
2.   [image: image225.wmf]
This is the glide reflection through the horizontal line [image: image226.wmf]shifting 1 unit to the right.

3.    [image: image227.wmf]
This is the reflection through the 45-degree line passing through the origin and 1+i. 


4.    [image: image228.wmf]
This is the glide reflection through the 45 degree line passing through [image: image229.wmf]and [image: image230.wmf].


5.     [image: image231.wmf]
This is a dilating reflection with center [image: image232.wmf]. The axis of reflection is the horizontal line through [image: image233.wmf].

6.     [image: image234.wmf]
This is a dilating reflection with center [image: image235.wmf]. The axis of reflection is the 45 degree line through the center and [image: image236.wmf].

Consider the three triangles in the following picture. The two large ones are congruent 

	[image: image237.png]L*







and all three are similar. Hence there is a congruence that maps the blue triangle onto the yellow triangle and there are similarities that map the green triangle onto the yellow and blue triangles. Can we find them? There are nice geometric constructions to identify centers and axes for similarities; but we will take advantage of the complex model of the plane. Recall that a similarity is uniquely determined by the images of two points and its orientation.  

So the congruence that takes the blue triangle onto the yellow triangle is determined by the image of two points and the fact that it is opposite. Let 
[image: image238.wmf].  Taking corresponding vertices on the short side of the triangles, we have 
[image: image239.wmf] and
[image: image240.wmf] Solving this system gives 
[image: image241.wmf].  We have that the point 
[image: image242.wmf] is on the axis of reflection. This point is on the short edge of the yellow triangle and the axis must be the (red) line L through that point and the corresponding point on the blue triangle. So s is the glide reflection about L and translates by 7+7i.  Let s(z) = az+ b denote the direct similarity that takes the green triangle onto the blue one.  Again choosing the vertices of the short sides we get the following system: 
[image: image243.wmf] and 
[image: image244.wmf].  Solving yields 
[image: image245.wmf]. From this we see that rotation is 180 degrees; the magnification factor is 1.5 and the center is 
[image: image246.wmf].  Finally, denote the opposite similarity that takes the yellow triangle onto the green one by 
[image: image247.wmf].  The system
[image: image248.wmf] and 
[image: image249.wmf]from which we compute 
[image: image250.wmf].  From our equation for the center and for a second point on the axis of reflection we conclude that s is the dilating reflection with magnification factor 
[image: image251.wmf], center c* = 10 - 8i and axis L* the negative 45 degree line through c*.

Worksheet #10. SIMILARITIES
For each of the following pairs of triangles, find the similarity that takes one onto the other and then describe it geometrically.
	[image: image252.png]





B onto R:

Reflecting dilation;

[image: image253.wmf];
center, -1.6+10i;

axis: vertical line;

magnification, 3/2.

B to G:
Rotating dilation;

[image: image254.wmf];

center, 76/13+10i/13;

90 degree rotation;

magnification, 3/2.

B to Y:

Rotation;


[image: image255.wmf];

center, 8+10i;

270 degree rotation.

R to G:

Glide reflection;


[image: image256.wmf];

axis, -45 degree line through 1-6i.
R to Y: 

Reflecting dilation; 
[image: image257.wmf]; center, 8+10i; axis, 45 degree line magnification, 2/3.
Y to G:

Rotating dilation;
[image: image258.wmf];  center, 1.6 - 2i; 180 degree rotation; magnification, 3/2.

WORKSHEET #1:  THE COMPLEX PLANE

	[image: image259.png]





Plot the following complex numbers:

a = -7

b = 5i
c = 7+5i
d = 8-3i
e = -8+3i
f = -7-5i
Identify the plotted complex numbers:

g =

h =

j =

k =

r = 
s =

Compute the absolute value of each of these complex numbers.

WORKSHEET #2  ADDITION AS A TRANSLATION

Give a geometric description of each of the following translations;


[image: image260.wmf];



[image: image261.wmf]; 


[image: image262.wmf]; 


[image: image263.wmf]; 


[image: image264.wmf]; 
Give the 
[image: image265.wmf]formula for each of the following translations: 

Find z where
[image: image266.wmf]translates each point down 4 units; 

Find z where
[image: image267.wmf]translates each point down 4 units and 5 units to the left;

Find z where
[image: image268.wmf]moves each point 
[image: image269.wmf]units along the positive 45o line:


Find z where
[image: image270.wmf]moves each points 3 units along the positive 45o line: 

WORKSHEET #3  COMPLEX ARITHMETIC I

Carry out the following computations:

1.  [image: image271.wmf] 

2.  [image: image272.wmf] 

3.  [image: image273.wmf] 

4.  [image: image274.wmf] 

5.   
[image: image275.wmf]
6. 
[image: image276.wmf]
7. 
[image: image277.wmf]
8.  
[image: image278.wmf]
9.  
[image: image279.wmf]
WORKSHEET #4  TRIGONOMETRIC REPRESENTATION

	[image: image280.png]





Plot each of these complex numbers and compute its absolute value and angle of rotation.

1. 
[image: image281.wmf]
2. 
[image: image282.wmf]
3.
[image: image283.wmf]
Identify and plot each of the complex with these absolute values and angles.

4. 
[image: image284.wmf]and 
[image: image285.wmf]
5. 
[image: image286.wmf]and 
[image: image287.wmf]
6. z = 6 and  
[image: image288.wmf]
WORKSHEET $5  THE PROPERTIES OF COMPLEX CONJUGATION

Verify each of the following equalities by direct computation.

1. 
[image: image289.wmf]
2. 
[image: image290.wmf]
3. 
[image: image291.wmf]
4. 
[image: image292.wmf]
5. 
[image: image293.wmf]
6. 
[image: image294.wmf]
7. 
[image: image295.wmf]
WORKSHEET #6  COMPLEX ARITHMETIC II

Express the following quotients in the form [image: image296.wmf] 

1.  [image: image297.wmf] 

2.  [image: image298.wmf] 

3.   [image: image299.wmf] 

4.   [image: image300.wmf] 

WORKSHEET #7  ROOTS OF UNITY

	[image: image301.png]





1.  Using the values of the trig functions on your calculator, compute the 5th roots of unity and plot them.

2.  Compute the 8th roots of unity and plot them.  

WORKSHEET #8  LINEAR FUNCTIONS

Describe the direct similarity given by each of the following linear functions.
1. 
[image: image302.wmf] 

2. 
[image: image303.wmf]
3. 
[image: image304.wmf]

Find the linear function for each of the following direct symmetries.
4.  The 90-degree counterclockwise rotation about the point -2.

5.  The dilation with magnification 1.5 about 2-3i.

6. The rotating dilation about i with factor 
[image: image305.wmf]and angle of rotation 60-degrees counterclockwise.

Worksheet #9. CONJUGATE LINEAR FUNCTIONS

Describe the opposite similarity given by each of the following conjugate linear functions.
1.  
[image: image306.wmf]
2.   
[image: image307.wmf]
3.    
[image: image308.wmf]

4.    
[image: image309.wmf]

5.     
[image: image310.wmf]

6.     
[image: image311.wmf]
Worksheet #10. SIMILARITIES
For each of the following pairs of triangles, find the similarity that takes one onto the other  and then describe it geometrically.
	[image: image312.png]
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