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Preface

This book concentrates on what one might call strategic algebra as opposed
to tactical algebra. By tactical algebra we mean the skills and techniques needed
to manipulate algebraic expressions and equations; by strategic algebra we mean
the planning skills needed to employ the power of algebra to solve problems and
to develop a deeper understanding of other parts of mathematics. Prior to the
development of computer programs and calculators capable of symbolic manipula-
tion, one had to be an expert algebra tactician before one could even develop their
strategic algebra skills. Here, most of tactical algebra is compressed into the first
three chapters and the rest of the book is devoted to strategic algebra. We are
assuming that the readers have already studied tactical algebra and only need a
review or are using a computer or calculator capable of symbolic manipulation or
both.

Throughout this book, we stress the close relationship between algebra and the
geometry via the number line or coordinate plane. We feel strongly that a geometric
interpretation of an algebraic concept yields a much deeper understanding. It
literally enables them to better “see what is going on.”

We will also include a variety of exercises ranging from the routine to the
challenging.

Jack Graver and Lawrence Lardy
Syracuse University, July 2008

Comments on This Draft.

We are in the process of revising and expanding this manuscript. We see the first
four chapters as the core of the book: a review of all of high school algebra and we
are concentrating on rewriting those chapters. As we make these revisions, we will
periodically send updates to the instructors of the summer algebra courses.

The remaining chapters are devoted to applications of algebra. If there are any of
these chapters that the instructors would like to use this summer, they should let
us know and we can update those too.

v





CHAPTER 1

Basic Algebraic Structures

1. Numbers, Operations and the Number Line

The term number can be interpreted in a variety of ways. So when using
that term, one should be careful and the best way to do this is to employ more
precise terminology. We actually work with several number systems. The simplest
of these is the natural numbers or counting numbers, as they are sometimes called:
1, 2, 3, . . . . With this number system we have two basic operations: addition
and multiplication. We say that this number system is closed under these two
operations; meaning that, if you add or multiply two natural numbers, you always
get another natural number. This is the very first number system known to mankind
and all other number systems are built upon it. One of the early additions was to
recognize 0 as a number. This enabled another step: the inclusion of the negatives
of the natural numbers.

The set of natural numbers, their negatives and zero are called the integers or
whole numbers. The integers are closed under addition, subtraction and multipli-
cation. Some simple fractions such as 1

2 and 1
3 were known and used quite early.

Including the full set of quotients of natural numbers {pq }, where both p and q are
natural numbers and q is not 0, is a number system that is closed under addition,
subtraction, multiplication and, with the exception of division by 0, division. The
set of all such fractions, is called the rational numbers. The rational numbers are
closed under addition, subtraction, multiplication and division by any number ex-
cept 0. Since all four of the basic mathematical operations are available for the
rational numbers, the arithmetic of the rational numbers is very powerful.

While the rational number system is an ideal system in which to do algebra and
quite adequate for many applications, bookkeeping for example, it is not sufficient
to do the algebraic computations that arise out of geometry. It is not possible to
represent all distances by rational numbers! The Greeks were well aware of this.
They proved very early that the diagonal of the square with side length 1 is

√
2,

the square root of 2, and that
√

2 is not a rational number. So the number system
we really want to work in is the set of all possible lengths and their negatives. This
system is best represented by the number line.

-7 -6 -5 -4 -3 -2 -1 0 7654321

The number on the number line that represents a length is the end point of the
segment of that length stretching from 0 to the right; the end point of the segment
of that length stretching from 0 to the left is its negative. We illustrate with the
square root of 2.

1
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This number system is called the real numbers and this way of picturing them
the number line. The real numbers contain all of the rational numbers. The real
numbers that are not rational numbers are called irrational numbers

Representing a real number can be somewhat of a problem. Of course, if
the real number is also an integer or rational number, we have the usual repre-
sentation; for example -17 or 86

5 . However, most real numbers are not rational
numbers. Some of them have special names like

√
2 or π; but, most do not. The

simplest method of representing a real number is by its decimal expansion. For
example, -17 is -17.000. . . , the ending string of 0s goes on forever; 86

5 = 17.200 . . . ;√
2 = 1.41421 . . . , here the dots indicate that the string of digits goes on for-

ever. Integers have decimal expansions with all digits to the right of the decimal
point equal to zero. Rational numbers have decimal expansions with the dig-
its to the right of the decimal point ending in a repeating pattern; for example;
229
260 = 0.88076923076923076923 · · · = 0.88076923, the overline indicates the seg-
ment of digits to be repeated. The irrational real numbers have decimal expansions
that “go on forever” without a repeating pattern. It is quite clear from this that
there are an infinite number of irrational numbers.

In reporting numbers one has several choices: 10
4 , 5

2 , 2 1
2 and 2.5 all represent

the same number. 5
2 and 2.5 are the most commonly used; 10

4 is useful for making
some computations: 5

2 + 1
4 = 10

4 + 1
4 = 11

4 . We will seldom use the mixed fraction
form 2 1

2 since it may be misinterpreted as 2× 1
2 = 1. For irrational numbers like π,

we will write 3.14 or 3.14159 or 3.14159265359 with the understanding that these
are only approximations of π. A natural question to ask is “how can we tell if
a real number is rational or irrational?” If we compute any number of its digits,
how could we know that it would not start a repeating pattern if we had computed
the next few? In general, it may be very hard to decide if a number is rational or
irrational. It was first proved that π was irrational in the late 1700s. However, it
is rather easy to see that

√
2 is not rational (and therefore irrational).

Exercise 1.1. In this exercise, we outline a proof that
√

2 is irrational; you
are to fill in the details. It is a proof by contradiction, that is, we will assume that√

2 is rational and show that that assumption leads us to an impossible equality.
The basic fact that we will use is a fundamental property of the natural numbers:
each natural number has a unique factorization into primes. For example 360 =
2× 2× 2× 3× 3× 5 can be written no other way as a product of primes (except to
change the order in which they are multiplied). We start by assuming that

√
2 = p

q ,
where p and q are natural numbers.

(i) Then p =
√

2q.
(ii) Hence p2 = 2q2.

(iii) p2 has an even number (perhaps 0) of 2s in its prime factorization.
(iv) 2q2 has an odd number (perhaps 1) of 2s in its prime factorization.
(v) Thus, p2 = 2q2 is impossible.
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Like the rational numbers, the real numbers are closed under addition, subtrac-
tion, multiplication and division by any number except 0. The Greeks showed this
by giving simple methods for constructing a length equal to the sum or difference
of two lengths, for a length equal to the product of two lengths and for a length
equal to the quotient of two non-zero lengths. These are described for the interested
reader in an exercise at the end of this section. Since the integers belong to the
real numbers and the real numbers are closed under division, all rational numbers
belong to the set of real numbers.

The number line gives us a nice geometric way of viewing our basic operations
of adding, subtracting, multiplying and dividing. The result of adding 2 to 3 is 5,
the number 2 units to the right of 3. In general adding 2 to any number results in
the number 2 units to its right. So we can think of adding 2 as shifting the number
line 2 units to the right. Adding -2 or subtracting 2 shifts the number line 2 units
to the left.

-7 -6 -5 -4 -3 -2 -1 0 7654321

-7 -6 -5 -4 -3 -2 -1 0 7654321

PPPPPq
PPPPPq

PPPPPq
PPPPPq

PPPPPq
PPPPPq

PPPPPq

Multiplying by 2 doubles the distance of each number from 0:

-7 -6 -5 -4 -3 -2 -1 0 7654321

-7 -6 -5 -4 -3 -2 -1 0 7654321

?
HHj

PPPPPq

XXXXXXXXz
���

�����)

��������9

So we may think of multiplying by 2 as stretching or magnifying the number
line by a factor of 2 about 0. Dividing by 2 is the same as multiplying by 1

2 and
may be thought as shrinking or contracting the number line by a factor of 1

2 about
0. Finally, multiplying each number by -1, i.e. negating each number, simply flips
the number line over 0. To indicate that we are thinking of these operations as
transformations of the line, we can write x→ (x+ 2), where x represents any real
number. Using this notation the other transformations we have just introduced are
x → (x − 2), x → 2x, x → 1

2x and x → −x. We use this notation in the next
exercise

Exercise 1.2. Describe each of the following transformations algebraically and
geometrically. In each case check what happens to the number 0.

(i) x→ (x+ 1
2 );

(ii) x→ 4
7x;

(iii) x→ − 4
7x;

(iv) x→ (3x+ 2);
(v) x→ (−3x+ 2).

Exercise 1.3. Give the transformation notation for each of the following op-
erations or sequence of operations. In each case check what happens to the number
0.

(i) multiply each number by 7;
(ii) multiply each number by 7 and then add 2;

(iii) add 2 to each number and then multiply each number by 7;
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(iv) divide each number by 7;
(v) divide each number by 7 and then subtract 2;
(vi) subtract 2 from each number and then divide each number by 7;

Since lengths may be copied from one segment to another using a pair of com-
passes, addition and subtraction are easy to carry out geometrically. we Illustrate
this procedure by constructing a+b and a−b where a and b are the lengths pictured
below:

�
�
�
�
�
��

XXXX

a

a

b

b
←− a+ b −→

a− b

The geometric construction of the product of two lengths a and b goes like
this: First reposition the two lengths so that they have a common end point and
are perpendicular to one another as indicated on the left in the figure below. Next
mark off one unit from O along segment a and denote the other endpoint of that
segment by C.

r r rr r r
r r r

O O OA A A

B B B

a

b r r
C C
A
A
A
A
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
ArD

Q
Q
Q

Q
Q

Q
Q

Q
Q

QQ

r
E

To multiply b by a construct the line through C and B and then the parallel line
through A. Let D denote the intersection of this line with the line through O and
B. In the next exercise you will be asked to prove that the length of OD is b times
a. To divide b by a construct the line through A and B and then the parallel line
through C. Let E denote the intersection of this line with the line through O and
B. In the next exercise you will be asked to prove that the length of OE is b divided
by a.

Exercise 1.4.
(i) Prove that the length of OD is b times a; remember that OC has length

1.
(ii) Prove that the length of OE is b divided by a.

Exercise 1.5. In verifying these constructions, we assumed that a > 1. Make
and verify the constructions in the case that a < 1.
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A Note About Notation. The symbols + and − are standard for addition and
subtraction. Multiplication, on the other hand, is represented in several different
ways. For example, the product of numbers x and y can be written as: x× y, x · y,
x ∗ y or simply xy. Similarly, the quotient, x divided by y, can be written x ÷ y,
x/y or x

y . One should take care not to confuse the multiplication symbol × and the
letter x, a variable standing for some unknown number. There is a special notation
used when a number is multiplied times itself: x× x = x2, x× x× x = x3, and so
on.

A Note About Parentheses. Each of these operations is defined as a way of
combining exactly two numbers. So when confronted with an expression like 3×4+
5, we have to be told which operation to carry out first. To give these instructions
we use parentheses; (3×4)+5 or 3×(4+5). All operations within parentheses should
be carried out before the result is combined with numbers outside the parentheses.
Hence in the first case, we have (3 × 4) + 5 = 12 + 5 = 17 and, in the second
case, 3 × (4 + 5) = 3 × 9 = 27. In some expressions, the way the parentheses are
placed makes no difference. For example, 3 + 7 + 6 = 16 no matter “how you
slice it.” Also in some case, there are conventions when parentheses are absent.
Generally, multiplication takes precedence over addition; so 3× 4 + 5 is understood
to mean (3 × 4) + 5 and not 3 × (4 + 5). In complicated expressions such as
(2(3 + 4)− 5)(3− 2(4− 1)), we start from the inside and work out:

(2(3+4)−5)(3−2(4−1)) = (2×7−5)(3−2×3) = (14−5)(3−6) = 9×(−3) = −27.

Exercise 1.6. Compute each of the following.
(i) (15− 5(8− 6))/5 + 4(7/2 + 3× (−2))
(ii) (4− 3 + 2(4− 3))/(5(4− 3)− 3(4− 5))

(iii) (4− 6)/(3 + 2) + (3 + 2)/(4− 6)

2. Simple Algebraic Sentences

The very simplest of algebraic sentences should really be called numeric sen-
tences:

• 1
3 = 2

6 , the numbers 1
3 and 2

6 are equal, that is, have the same value or
occupy the same position on the number line.

-7 -6 -5 -4 -3 -2 -1 0 7654321

s
↑

1
3 = 2

6

• 3 < 5, the number 3 is less than the number 5. Geometrically, this means
that 3 appears to the left of 5 on the number line.

-7 -6 -5 -4 -3 -2 -1 0 7654321

s s3 5

• 3 > −5, the number 3 is greater than the number -5. Geometrically, this
means that 3 appears to the right of -5 on the number line.

-7 -6 -5 -4 -3 -2 -1 0 7654321

ss 3-5

Like sentences in English, numerical and algebraic sentences may be false. For
example, the sentences 3 = 5 and 3 > 5 are both false. The symbol 6= is often used
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to indicate that the corresponding equality is false. For example, the algebraic
sentence 3 6= 5, which is read as 3 is not equal to 5, is a true statement. This is a
simple way of saying that the sentence 3 = 5 is false.

Numeric sentences can be complicated by the use of arithmetic operations. The
operations of addition and multiplication are denoted in the usual way; + for addi-
tion and × for multiplication. As we pointed out above, when both operations occur
in a statement, it is understood that multiplication takes precedence over addition
unless the parentheses indicate otherwise. That is, multiplication is performed first.

Exercise 1.7. In each of the following cases decide if each of the listed sen-
tences is true or false.

(i) 5, 996, 427 + 5 = 5, 996, 427 + 6,
5, 996, 427 + 5 < 5, 996, 427 + 6,
5, 996, 427 + 5 > 5, 996, 427 + 6.

(ii) 299× 31− 7 < 299× 31− 5,
299× 31− 7 = 299× 31− 5,
299× 31− 7 > 299× 31− 5.

(iii) 3× 5− 11 < 3× 6− 11,
3× 5− 11 = 3× 6− 11,
3× 5− 11 > 3× 6− 11,
3× 5− 11 6= 3× 6− 11.

(iv) 7× 3 + 7× 2 = 7× 5
7× (3 + 7)× 2 > 100
7× (3 + 7)× 2 < 100
7× 3− 5 = 5− 7× 3

Exercise 1.8. In each of the following cases decide if each of the listed sen-
tences is true or false.

(i) 3 + 5 = 8
(ii) 3 + 8 = 17− 5
(iii) 3× 5− 3 < 10

3× 5− 3 = 10
3× 5− 3 > 10

(iv) 3× 7 + 12 = 12 + 7× 3
3× 7 + 2 > 1 + 7× 3

(v) 2× (4 + 5) = 2× 4 + 2× 5
2× (4 + 5) = 2× 4 + 5

Exercise 1.9. In each of the following cases fill in the blank with a single
number that will make the sentence true.

(i) + 5 = 17
(ii) 29− = 17− 5

(iii) 3× 5− < 10
(iv) 7× 3 + = 28
(v) 3

2 × 6− < 5
(vi) 2 + 2× 3 + = 9

3. Variables

In Exercise 1.9, we used a blank to indicate a number to be computed. It is
more convenient to use a letter to represent such an unknown quantity. Such a
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letter is called a variable, because it can represent various values. Rewriting that
exercise with variables, we get (Of course, other choices for letters could be used.):

(i) x+ 5 = 17
(ii) 29− w = 17− 5

(iii) 3× 5− a < 10
(iv) 7× 3 + y = 28
(v) 3

2 × 6− v < 5
(vi) 2 + 2× 3 + s = 9

We will use the term algebraic sentences to include number sentences and those
sentences involving numbers and variables.

Perhaps the simplest of all algebraic sentences are those of the form “x = 7”
or “a = 1

5 .” In fact, one of the basic goals in algebra is to reduce a complicated
algebraic sentence to one such simple sentence. For example, given the sentence
“2x − 3 = x + 4”, we can carry out a sequence of algebraic steps to show that it
is equivalent to the simpler sentence “x = 7.” By that we mean the two sentences
“say exactly the same thing” much as the English sentences “Having red hair is
one of the traits that helps distinguish Fred from his classmates.” and “Fred’s hair
is red” say basically the same thing.

Exercise 1.10. In each of the following cases compute a value for the variable
that makes the sentence true. Give your answer in a simple algebraic sentence.

(i) x+ 5 = 17
(ii) 29− w = 17− 5

(iii) 7× 3 + y = 28
(iv) 2 + 2× 3 + s = 9

We call the set of values for the variables that make an algebraic sentence
true the solution set for that algebraic sentence. Just like the simplest numerical
sentences, the solution sets for the simplest algebraic sentences may be visualized
on the number line.

• x = 1
3 , the variable x equals the number 1

3 , that is, the only value for the
variable x that makes this a true algebraic sentence is 1

3 , or occupy the
same position on the number line.

1
3-7 -6 -5 -4 -3 -2 -1 0 7654321
rx

• b < 5, the values for b that make this a true algebraic sentence are all
numbers that are to the left of 5 on the number line. This solution set is
indicated by the red arrow on the number line.

-7 -6 -5 -4 -3 -2 -1 0 7654321

� bb

• R > −5, the values for R that make this a true algebraic sentence are all
numbers that are to the right of -5 on the number line. This solution set
is indicated by the red arrow on the number line.

-7 -6 -5 -4 -3 -2 -1 0 7654321

-b R

It is often the case that one wants to find the values of a variable that make
two or more algebraic sentences true. For example, we might want to identify the
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values of the variable k that make both of the sentences k ≥ 4 and k < 6 1
2 true.

(Note: The symbol ≥ is used to indicate that the quantity to the left of the symbol
is greater than or equal to the quantity to the right.) These are the numbers that
lie to the left of 6 1

2 and are either equal to 4 or lie to the right of 4. To indicate
that 4 is included in the solution set, the circle representing 4 is filled in:

-7 -6 -5 -4 -3 -2 -1 0 7654321

r bk

Exercise 1.11. In each case, write an algebraic sentence or sentences that have
the set of numbers pictured in red as the solution set. Also write these sentences
in words.

(i)

-7 -6 -5 -4 -3 -2 -1 0 7654321

b b
(ii)

-7 -6 -5 -4 -3 -2 -1 0 7654321

b -

(iii)

-7 -6 -5 -4 -3 -2 -1 0 7654321

b b
(iv)

-7 -6 -5 -4 -3 -2 -1 0 7654321

r b
(v)

-7 -6 -5 -4 -3 -2 -1 0 7654321

r r
Exercise 1.12. In each case indicate on the number line the set of values for

the variable that make the algebraic sentence(s) valid.

(i) x > − 1
2 and x < 3

-7 -6 -5 -4 -3 -2 -1 0 7654321

(ii) x < − 1
2 or x > 3

-7 -6 -5 -4 -3 -2 -1 0 7654321

(iii) x < − 1
2 and x < 3

-7 -6 -5 -4 -3 -2 -1 0 7654321

(iv) x < − 1
2 or x < 3

-7 -6 -5 -4 -3 -2 -1 0 7654321

(v) x > −1 and x ≤ 3
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-7 -6 -5 -4 -3 -2 -1 0 7654321

(vi) x > −2 and x 6= 0 and x 6= 1

-7 -6 -5 -4 -3 -2 -1 0 7654321

Exercise 1.13. Algebraic sentences can be complicated by the use of algebraic
operations. In each case indicate on the number line the set of values for the variable
that make the algebraic sentence(s) valid.

(i) 3x+ 5 = 8

-7 -6 -5 -4 -3 -2 -1 0 7654321

(ii) 3 + x = 14− 5

-7 -6 -5 -4 -3 -2 -1 0 7654321

(iii) 3x− 2 < 10

-7 -6 -5 -4 -3 -2 -1 0 7654321

(iv) 2− 3x < 8

-7 -6 -5 -4 -3 -2 -1 0 7654321

(v) 2x+ 5 ≤ 7 and 3− x ≤ 7

-7 -6 -5 -4 -3 -2 -1 0 7654321

Exercise 1.14. In each case indicate on the number line the set of values
for the variable that make the algebraic sentence(s) valid. Then write a simpler
algebraic sentence that has the same solution set.

(i) 5, 996, 427 + x = 5, 996, 427 + 6,

-7 -6 -5 -4 -3 -2 -1 0 7654321

(ii) 299× 31− g < 299× 31 + 5,

-7 -6 -5 -4 -3 -2 -1 0 7654321

(iii) 3× w − 4× 11 < 3× 6− 4× 11,

-7 -6 -5 -4 -3 -2 -1 0 7654321

(iv) 1
2 × p− 5× 12 < 1

2 × 7− 5× 12,

-7 -6 -5 -4 -3 -2 -1 0 7654321

(v) 2× s+ 8× 4 ≥ 6 + 8× 4,
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-7 -6 -5 -4 -3 -2 -1 0 7654321

4. Modifying Algebraic Sentences

In Exercises 1.7 and 1.14, you saw some methods for simplifying numerical and
algebraic sentences. In this section we will formalize these and list a few more. Each
of the operations in the following list will not change the validity of a numerical
equation and they will not change the solution set of an algebraic equation.

• add or subtract the same number to each side of an equation or in-
equality;

• multiply or divide each side of of an equation by the same non-zero
number;

• multiply or divide both each side of an inequality by the same positive
number;

• multiply or divide each side of of an inequality by the same negative
number and reverse the direction of the inequality.

Exercise 1.15. Consider the following questions.
(i) What would happen if you were to multiply both sides of an equality

by 0?
(ii) What would happen if you were to multiply both sides of an inequality

by 0?

To complete the list of exclude cases, let’s consider division by 0. What is the
result when a number, say 2 to be specific, is divided by 0? To answer this question,
recall that the operation of division of a number a by a number b should yield a
number c such that a = b×c. Thus, 2÷0 should be a number c such that 2 = 0×c.
But c is supposed to be a number, so 0× c = 0 and 2 6= 0. Therefore we conclude
that division by 0 is not meaningful and say that it is an undefined operation.
Another, very important and very useful property of 0 is described below in two
different ways:

• The product of any two non-zero numbers is non-zero.
• If a× b = 0, then either a = 0 or b = 0.

Each side of an algebraic equation or inequality is called an algebraic expression.
We can expand our list of operations that will not change the validity of a numerical
equation and they will not change the solution set of an algebraic equation.

• add or subtract the same algebraic expression to both sides of an equation
or inequality;

• multiply or divide both sides of an equation by an algebraic expression
that is never 0;

• multiply or divide both sides of an inequality by an algebraic expression
that is always positive;

• multiply or divide both sides of an inequality by an algebraic expression
that is always negative and reverse the direction of the inequality.

Since many algebraic expressions can be positive for some values of the variable,
negative for other values and zero for other values multiplying or dividing both sides
of an inequality by such an algebraic expression can change the solution set. Such
cases must be analyzed carefully.
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Using the properties listed above, we can often achieve the goal mentioned
earlier: reduce complicated algebraic equations to simpler algebraic equations. For
example, consider 7x− 7 = 5x+ 3.

(i) Adding 7 to each side, 7x− 7 + 7 = 5x+ 3 + 7,
gives the equivalent equation 7x = 5x+ 10.

(ii) Subtracting 5x from each side, 7x− 5x = 5x+ 10− 5x
gives the equivalent equation 2x = 10.

(iii) Finally, dividing both sides by 2,
2x
2

=
10
2

gives the simpler equivalent equation x = 5.
It is always a good idea to check that the solution(s) to the simple equation are

actually solutions to the original equation. If we replace x by 5 in 7x− 7 = 5x+ 3,
we get 7× 5− 7 = 5× 5 + 3 or 35− 7 = 25 + 3 or 28 = 28. Check!

Exercise 1.16. Simplify each of the following algebraic sentences.
(i) 3×W + 7 = 17−W
(ii) 3×W + 7 < 17−W

(iii) 4× x− 23 ≥ 1− 2× x
(iv) 2× p+ 5 < 7− 2× p
(v) 4x− 5 + x2 − (x+ 3)2 + x+ 49

(vi) 4x− 5 + x2 − (x− 3)2 + 2x− 5
(vii) 4x− 5 + x2 − (x− 3)2 + 2x+ 5

Now consider the equation (p− 7)× (p+ 3) = 0 This algebraic sentence can be
simplified using the fact that when the product of two numbers is zero then at least
one of the numbers must be zero. Since algebraic expressions stand for numbers,
this is true for algebraic expressions too. Hence, (p − 7) × (p + 3) = 0 may be
rewritten in terms of two simpler algebraic sentences as:

Either (p− 7) = 0 or (p+ 3) = 0.
Each of these two algebraic sentences can be further simplified and we have (p −
7)× (p+ 3) = 0 is equivalent to: Either p = 7 or p = −3.

Exercise 1.17. Simplify each of the following algebraic sentences.
(i) (3−W )×W = −3W
(ii) (3−W )× (W + 7) = 0

(iii) 4× (3x− 21) = x× (3x− 21)
(iv) 4× (3x− 21) = x× (x− 7)
(v) (x+ 3)2 = 0

(vi) (5 + x)2 × (x− 3)2 = 0

Historical Note. Around 1650 BC, a man named Ahmes recorded the following
problem in the Rhind Papyrus (now called the Ahmes Papyrus): ”A quantity added
to a quarter of itself makes 15”. Translated to an equation we have x + x

4 = 15.
Ahmes used trial and error to obtain a solution. How might he do that?

We can push this line of reasoning a bit further by noting that the product of
two positive numbers is a positive number, the product of two negative numbers is
a positive number and the product of one positive number and a negative number
is a negative number. Suppose (x − 3)(x + 4) > 0, then either (x − 3) > 0 and
(x + 4) > 0 or (x − 3) < 0 and (x + 4) < 0. Simplifying both (x − 3) > 0 and
(x + 4) > 0, we see that in this case x > 3 and, simplifying both (x − 3) < 0 and
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(x + 4) < 0, we have x < −4. Hence, if (x − 3)(x + 4) > 0, then either x > 3 or
x < −4. Now suppose (x− 3)(x+ 4) < 0, then either (x− 3) > 0 and (x+ 4) < 0
or (x − 3) < 0 and (x + 4) < 0. Simplifying both (x − 3) > 0 and (x + 4) < 0,
we see that, in this case, x > 3 and x < −4, which is impossible. Simplifying both
(x − 3) < 0 and (x + 4) > 0, we have −4 < x < 3. Hence, if (x − 3)(x + 4) < 0,
then −4 < x < 3.

Exercise 1.18. Simplify each of the following algebraic sentences.
(i) (3−W )×W < −3W
(ii) (3−W )× (W + 7) > 0

(iii) 4× (3x− 21) < x× (3x− 21)
(iv) 4× (3x− 21) > x× (x− 7)
(v) (x+ 3)2 > 0

(vi) (x+ 3)2 < 0
(vii) (5 + x)2 × (x− 3)2 < 0

We close this section by including an important additional method for modi-
fying algebraic expressions and equations: the method of substitution. The idea is
simple, we replace a variable by an algebraic expression through out the original
expression or equation. For example, Suppose that we are given 3

4x−
9
4 = 2

3x−1 to
solve. One possible approach is to replace the variable x by the expression (12z+3):

3
4

(12z + 3)− 9
4

=
2
3

(12z + 3)− 1

Simplifying, we have 9z = 8z + 1 or z = 1. Setting x = 12z + 3 then gives x = 15.
We easily check that x = 15 works in the original equation 3

4x−
9
4 = 2

3x− 1.

Exercise 1.19. In each case, make the indicated substitution and simplify the
resulting algebraic sentence.

(i) Let x = (3y − 6) in x
3 − 5 = 5

3x− 2
(ii) Let x = 30y in x

3 −
x
5 = 1

4x
2

5. Multiple Variables

Sometimes it is useful to consider algebraic sentences that involve two or more
variables. For example, 3x − 2 = 3 + 2y. By a solution to this equation we mean
two numbers, a value for x and a value for y, which when substituted for x and
y respectively, the result is a true numerical sentence. Letting x = 3 and y = 2
in the example gives the sentence 9 − 2 = 3 + 4 and therefore this pair of values
is a solution. In general, an algebraic sentence with more that one variable can
have many solutions. For the example, x = 5 and y = 5 is another solution, for
3x − 2 = 3 + 2y as is x = 6 and y = 6 1

2 . There is an easy way to describe all
solutions to 3x− 2 = 3 + 2y. We “solve the equation” for x or for y:

(i) Adding 2 to each side gives 3x = 5 + 2y;
(ii) then, dividing both sides by 3 gives, x = 5+2y

3 .

Now select any number for y, say 8, replace y by 8 and simplify to get x = 5+2×8
3 =

21
3 = 7. So x = 7, y = 8 is a solution. We get all possible solutions by taking all

possible values for y. Of course, we could have solved for y “in terms of x:”
(i) Subtracting 3 from each side gives 3x− 5 = 2y;
(ii) then, dividing both sides by 2 gives, 3x−5

2 = y.
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Here it is customary to rewrite the equation as y = 3x−5
2 . Taking x = 7 gives

y = 8, the solution we had above. We write our solutions as a pair (7, 8) where
the order is always the x value followed by the y value. Taking x equal to 3, 5
and 6, give us three more solutions (3, 2), (5, 5) and (6, 13

2 ). We picture or plot
these four solutions as points in the coordinate plane. And we note that they all lie
on a straight line. Furthermore, the converse is also true: every point on the line
corresponds to a solution for 3x− 2 = 3 + 2y. We have circled four other points on
this line: (x = −1, y = −4), (x = 1, y = −1), (x = 2, y = 1

2 ), (x = 4, y = 7
2 ). You

should check that each of these points is indeed a solution.
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Exercise 1.20. Solve each of the following equations for one of the variables.
Then list several solutions.

(i) x+ 2y + 1 = 7
(ii) x+ 2y + 4 = 7x

(iii) 2s+ 5t = s+ 5
(iv) 3u− 5v = 2u+ v + 1

Exercise 1.21. In each of the following cases, solve for one variable in terms
of the other and graph the solution set.

(i) x+ 2y + 1 = 7 x

y
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(ii) x+ 2y + 4 = 7x x

y

(iii) 2s+ 5t = t+ 4 s

t

(iv) u− 4v + 6 = 9− 2u− v
u

v

Suppose we have the graph of a line in the x, y-plane. Can we find an equation
for which this line is the solution set? In general there are many different equations
for the same line; but each such equation can be put in the form ax+ by = c. Our
task is to use the information we have about the line to determine values for a, b
and c such that the equation ax + by = c has the line as its solution set. To be
specific, consider the following graph:
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Each point on the graph will give us an equation involving a, b and c. For example,
the point (x = 3, y = 2) on the line gives the equation a×3+b×2 = c and the point
(x = 5, y = 5) yields a×5+b×5 = c. It follows that a×3+b×2 = a×5+b×5 and
then that 2 × a = −3 × b. Thus one solution is a = 3 and b = −2. Plugging these
values into the original equation gives 3x− 2y = c. Replacing x and y by 3 and 2
gives c = 5. So we have the line 3x− 2y = 5 passes through the point (3,2) and we
easily check that it also passes through the point (5,5). Notice −6x+ 4y = −10 is
also an equation for this line. In fact, we can get as many different equations for
this line as we wish by simply multiplying both sides of 3x − 2y = 5 by any real
number: 3πx − 2πy = 5π is also an equation for this line. Equations for lines are
usually reported in the standard form y = mx + b; putting our equation in this
form, we get y = 3

2x−
5
2 . The only lines that do not have an equation of this form

are the vertical lines. They all have simple equations of the form x = c for some
constant c. This can be confusing since the variable y does not appear at all. But,
it simply means that the value of y is arbitrary. For example, x = 3

2 has solutions
( 3
2 , 0), ( 3

2 ,−
1
2 ), ( 3

2 , 73) and indeed ( 3
2 , y) for every possible choice for y.

Exercise 1.22. In each of the following two x, y-planes, we have graphed a
line. Find an equation for each line.

J
J
J
J
J
J
J
J
J
J
J
J
J
JJ
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y
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y

6. Systems of Equations

In the previous section solving for the coefficients a, b and c of the equation for
a line resulted in solving the the pair of equations 3a+ 2b = c and 5a+ 5b = c. We
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refer to such a problem as a system of equations and more generally a system of
algebraic sentences. In this case, we had a system of two equations a×3+ b×2 = c
and a × 5 + b × 5 = c in three unknowns a, b and c. By a solution to a system
of algebraic sentences we mean a set of values for the variables that make every
algebraic sentence in the system true. For this problem we found two solutions,
a = 3, b = −2, c = 5 and a = −6, b = 4, c = −10, and we noted that there were
many more.

The simplest case of systems are systems of two equations in two unknowns.
For example 3x − 2y = 5 and 2x + y = −2. We may picture the solution to this
system in the plane. Each of these individual algebraic sentences has a line as its
solution set and we have graphed these below; the solution set of 3x − 2y = 5 in
blue and the solution set of 2x+ y = −2 in red. It is easy to see geometrically that
there is exactly one solution; it is represented by the point where the lines cross.
However, it is not easy to see exactly what that solution is. We might approximate
it by taking x = 1

6 and y = − 7
3 . Checking, we have 2( 1

6 ) + (− 7
3 ) = −2; but,

3( 1
6 )−2(− 7

3 ) = 31
6 6= 5. We could try drawing a more accurate picture and later we

will introduce some iterative techniques that would give a better approximation;
but the best option is to solve the system algebraically by substitution:

• Solving 2x+ y = −2 for y gives y = −2x− 2.
• Substituting −2x − 2 for y in 3x − 2y = 5, gives 3x − 2(−2x − 2) = 5;

which simplifies to 7x = 1 or x = 1
7

• Substituting 1
7 for x in y = −2x− 2 then gives y = − 16

7 .
• The reader now can easily check that ( 1

7 ,−
16
7 ) is indeed the solution.
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This problem illustrates the different roles that algebra and geometry play in our
development: geometry to understand or see what’s going on - algebra to compute
precise solutions.

Exercise 1.23. Solve each of the following systems geometrically and alge-
braically.
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(i)

2x+ y = 1
x+ y = 4

(ii)

2x+ y = 1
4x+ 2y = 4

(iii)

2x+ y = 1
x+ y = 4

3x− y = 10

7. Inequalities

The solution sets for inequalities involving more than one variable may also be
pictured on the number grid. Consider the simple inequality x < y + 1. The first
step in picturing the solution set to this inequality, is to draw the solution set to
the corresponding equality x = y + 1:

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

r�

6

x

y

We have also pictured a point on this line of equality, x = y + 1. Note that if we
increase the value of y by any amount, however small, we get a solution to our
inequality. Similarly, if we decrease the value of x by any amount, however small,
we again get a solution to our inequality. since this same argument applies to every
point on the line, the solution set to our inequality includes all points to the left
and above the line. In fact, this is the solution set. To see this, we use a similar
argument identifying the points to the right and below the line as those that satisfy
the inequality x > y + 1.

We can also visualize solutions to systems of inequalities. Consider 3x−2y < 5
and 2x+y > −2. We have just graphed the two lines of the corresponding equalities
and we reproduce their graphs below.
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The solutions to 3x − 2y < 5 is the set of all of the points on one side of the
blue line and the solutions to 2x+ y > −2 is the set of all of the points on one side
of the red line. Hence the solutions to the system is the set of all point in one of
the four wedge shaped regions defined by these two lines. Which one? One easy
way to find out is to try a point in each region. The natural first point to check
is the origin (0, 0) and it works (0 < 5 and 0 > −2); a lucky first guess. It is no
longer necessary, but let’s check a point in each of the other regions. The point
(−5, 0) is in the left hand region and −15 < 5 but −10 6> −2; the point (5, 0) is in
the right hand region and here 15 6< 5 while 10 > −2; finally, the point (0,−5) is
in the bottom region, here 10 6< 5 and −5 6> −2.
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Exercise 1.24. Solve each of the following systems geometrically.

(i)

2x+ y > 1
x+ y < 4

(ii)

2x+ y > 1
4x+ 2y < 4

(iii)

2x+ y > 1
x+ y < 4

3x− y < 10
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8. Functions

The variables in algebraic sentences that arise from application have specific
meanings. Consider the following three algebraic sentences:

C = 20Q+ 2000
P = 100− .2Q
p = PQ− C = PQ− 20Q− 2000

In this system, Q the quantity of widgets produced and sold by the XYZ Widget
Company. C is the cost of producing Q widgets. P is the sale price when Q widgets
are sold. Finally, p is the profit when Q widgets are produced and sold. The first
equation, called the cost equation, tells us that there is an initial cost or fixed cost
of $2000 to startup production and then an additional $20 per widget produced.
The $20 for each widget is called the marginal cost. The second equation, called
the demand equation, is easier to understand if we solve for Q: Q = 500 − 5P .
Here we see that, as the price goes up the number of widgets that you will sell goes
down. In particular if P = 0, that is if you are giving the widgets away, there is
a demand for 500, on the other hand, no one would buy widgets priced at $100 or
more. Finally, we have the profit equation It is simply PQ, the amount of money
received from sales, minus C, the cost of producing that quantity.

Let’s consider a specific example. Suppose that the company produces 300
widgets. The total cost to the company is C = 20× 300 + 2000 = 8000 dollars and
the price at which these 300 widgets will sell is P = 100− .2×300 = 100−60 = 40.
dollars per widget. So the profit to the company is p = 40× 300− 8000 = 12000−
8000 = 4000 dollars. On the other hand, if the company produces and sells 400
widgets, they loose money: the cost is 20× 400 + 2000 = 10000 dollars; the price is
100− .2× 400 = 20 dollars per widget; the profit is 20× 400− 10000 = −2000 for
a $2,000 loss.

There are obvious questions to ask. What is the range of profitability? Produce
too few or too many and you loose money. What are the cutoffs? At what level of
production will profits be maximum? To answer these question we need a better
framework in which to interpret these equations. We observed in our examples that,
once the variable Q had been set, values of all of the other variables are forced.
We say that cost C, price P and profit p are all functions of the quantity Q. In
function notation, we would write:

C(Q) = 20Q+ 2000
P (Q) = 100− .2Q
p(Q) = P (Q)×Q− C(Q)

For each function, we say that Q is the independent variable and C, P or p the
dependent variable. We may rewrite p(Q) in terms of Q alone by replacing P (Q)
and C(Q) by the right hand sides of the corresponding equations:
p(Q) = (100− .2Q)×Q−(20Q+2000) = 100Q− .2Q2−20Q−2000 = −.2Q2 +80Q−2000

Writing or examples in function notation, we have:
C(300) = 8000, P (300) = 40, p(300) = 4000, all in dollars, and
C(400) = 10000, P (400) = 20, p(400) = −2000, again in dollars.

In working problems that arise from applications there is always the question of
keeping track of “dimensions.” Specifically, should we have maintained the dollar
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signs throughout the computations or is it OK to ignore them and only add them
at the end? For example we could have written

p = $40× 300− $8000 = $12000− $8000 = $4000

We can be even more precise and write

p = 40(dollars per widget)× 300(widgets)− 8000(dollars) = 4000(dollars)

or

p = 40
(
dollars

widget

)
× 300(widgets)− 8000(dollars) = 4000(dollars).

The safe way is to always include the dimensions, as they are called. However,
this can be very cumbersome and the natural tendency is to leave them out. A
good compromise is to leave them out but then go over the equation and make
sure that you could put them in if required. We will discuss this issue further
when working with more complicated examples. But another simple example we
are all familiar with is “mpg” miles per gallon. Suppose that you buy a new hybrid
that gets an average of 42mpg. and you fill the tank with 18.5 gallons of gas; how
far will you get before you run out of gas? 42 miles

gallons × 18.5gallons = 777miles.
The fuel efficiency figure was computed by driving the car over a standard route
of 1100 miles and then dividing by the amount of gas consumed 26.19 gallons:

1100miles
26.19gallons = 42 miles

gallons = 42mpg. If we invert miles per gallon, we get gallons
per mile: 1

42mpg = .0238 gallonsmiles . So for a 750 mile trip you can expect to use
0238 gallonsmiles × 750miles = 17.86gallons of gasoline.

Exercise 1.25. Building on this last discussion assume that gasoline costs
$4.77 per gallon. Make the following computations keping track of the dimensions.

(i) The expected cost of a 654 mile trip.
(ii) The average cost per mile to drive you car.

(iii) The distance you could go on $50.

Returning to our earlier business application, we review the graphing of func-
tions in the coordinate plane. We assign the horizontal axis to the independent
variable and the vertical axis to the dependent variable. The graph of the function
f(x) is then the set of all pairs of the form (x, f(x)). In the case of our example, the
graphs of C(Q) and P (Q) are straight lines. The profit function is a quadratic func-
tion and its graph is a parabola that opens downward. The graph is also a good
place to include dimensions making it clear that the independent variable is the
number of widgets produced and the dependent variables take on dollar amounts.

In Chapter 3 we will discuss quadratic equations in detail. We will return to
this problem then and answer the two questions posed above: What are the bounds
of the range of profitability, that is where does the graph cross the Q-axis? and For
what value of Q will profit be at its maximum and what is that maximum?
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CHAPTER 2

Tactical Algebra

1. The Rules of Algebra

Like any game, algebra must be played by the rules. Therefore, as with any
other game, you must know the rules. Remember back to the last time you tried to
learn a new game. Trying to play with the rule book in one hand is not much fun.
Only after you have internalized the rules can you begin to master the game. One
nice thing about algebra is that the rules are easy to understand and remember.
In fact, most of us learn algebra just like we learn most games: we watch it being
played by others and learn by example. But, in the end, to master any game you
must eventually sit down and read the rule book. So here is the rule book for the
game of algebra.

The game pieces are of three types: numbers, variables, and operations. The
numbers can be any of the number sets with which we are familiar: the natural or
counting numbers (0,1,2,. . . ), the integers (. . . -2,-1,0,1,2,. . . ), the rational numbers
and the real numbers; or even more complicated number systems like the complex
numbers. One usually starts learning algebra with the simplest of these systems,
the natural numbers. But soon it becomes clear that the problems that we can solve
with this number system is very restricted; so we soon begin to include negative
numbers (moving to the integers) then fractions (moving to the rational numbers).
We also start learning to play the game without the variables. In that case, the
rules we are about to give are often called the rules of arithmetic.

The variables are usually letters from our alphabet and they are best thought
of as numbers whose identity we have not yet discovered or, keeping with the
game analogy, wild cards in a card game. They are sometimes referred to as the
mathematical version of pronouns like “he”and “she”that can stand in for any
number. We use this interpretation to state our rules in terms of variables which
then hold for any numbers replacing those variables.

The rules of this game of algebra are all about combining and manipulating
variables and numbers using two basic operations: addition, “+”, and multipli-
cation, “×”. Later we will define the shortcut operations of substraction,“−”,
and division,“÷”; and some advanced operations like squaring, “()2”, and taking
square roots “√ ”. Just like points and lines in Euclidean geometry are “undefined
terms,”addition and multiplication are the undefined terms in the set of rules for
algebra. We will assume that, given any two numbers or variables, x and y, in
our number system, we may compute their sum x+ y and their product x× y. In
Chapter 1, we intrepreted our numbers as lengths and defined addition and multi-
plication geometrically. In different systems they may be defined differently; but,
no matter how they are defined they must satisfy the rules that we are about to
list.

23
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We will use these operations to combine numbers and variables into algebraic
expressions and we will use the rules to manipulate these expressions. Finally, as
with Euclid, we need to agree on the fundamental properties of the concept of
equality:

(i) (reflexive) Each algebraic expression is equal to itself.
(ii) (symmetric) If Expression A is equal to expression B, then expression B

is equal to expression A.
(iii) (transitive) If Expression A is equal to expression B and expression B is

equal to expression C, then expression A is equal to expression C.
(iv) (adding equals to equals) If expression B is equal to expression A and

expression C is equal to expression D, then expression A+C is equal to
expression B +D.

(v) (multiplying equals by equals) If expression B is equal to expression A
and expression C is equal to expression D, then expression A×C is equal
to expression B ×D.

Rule 1. Addition is commutative

x+ y = y + x for all numbers and variables x and y.

Rule 2. Addition is associative

(x+ y) + z = x+ (y + z) for all numbers and variables x, y and z.

Exercise 2.1. Choose numerical values (integers, rational or real numbers) for
the quantities (x, y, and/or z) appearing in Rules 1 and 2. Use your calculator to
find the value of each side of the equation and verify that the equation is valid for
the numbers that you chose.

This exercise may give us some level of confidence that addition on our number
systems do satisfy these rules. But, such examples do not prove that the rules hold
for all choices of numbers. However, as you will soon see, a specific example that
does not satisfy a rule is sufficient to show that an operation on a number system
does not satisfy a rule These two rules seem so natural to us that you may wonder
why we make such a fuss over them. The reason is that there are operations that
do not satisfy these rules.

Exercise 2.2. Show each of the following with a simple example.
(i) Subtraction is not commutative.
(ii) Subtraction is not associative.

(iii) Division is not commutative.
(iv) Division is not associative.

Rule 3. There is a special number called the additive identity and denoted by 0
with the property that

0 + x = x for all numbers and variables x.

Rule 4. For every number x there is another number called its additive inverse
and denoted by −x with the property that

x+ (−x) = 0.
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Exercise 2.3. Find the additive inverse for each of the following numbers and
variables.

(i) 7
(ii) -7

(iii) 1
2

(iv) −x

At this point, we could give a formal definition for addition on the natural
numbers, the integers, the rational numbers and the real numbers and then prove
that they all satisfy Rules 1, 2 and 3 and that all but the natural numbers satisfy
Rule 4. To do this would draw us into the logical foundation of these number
systems and would take us away from our main purpose: review and strengthen
our algebra skills. Hence, we will assume that natural numbers, the integers, the
rational numbers and the real numbers all satisfy Rules 1, 2 and 3 and that all but
the natural numbers satisfy Rule 4.

We now turn to multiplication. It is required to satisfy a similar set of four
rules.

Rule 5. Multiplication is commutative

x× y = y × x for all numbers and variables x and y.

Rule 6. Multiplication is associative

(x× y)× z = x× (y × z) for all numbers and variables x, y and z.

Rule 7. There is a special number, 1, called the multiplicative identity with the
property that

1× x = x for all numbers and variables x.

Rule 8. For every number, except 0, there is another number called its multi-

plicative inverse and denoted by
1
x

, or by x−1, with property that

x× 1
x
x× x−1 = 1.

In Section 4, Modifying algebraic sentences, of the last chapter we discussed
the necessity for making 0 an exception to this rule. As above, we will assume
that natural numbers, the integers, the rational numbers and the real numbers all
satisfy Rules 5, 6 and 7 and that the rational numbers and the real numbers satisfy
Rule 8.

Exercise 2.4. Find the multiplicative inverse for each of the following numbers
and variables.

(i) 7
(ii) -7

(iii)
1
2

(iv)
1
x

(v) −x
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Most of our numeric and algebraic computations involve both of these basic
operations. So we must be precise about how they interact. The following rule is
just what we need and all four number systems satisfy this distributivity rule:

Rule 9. Multiplication distributes over addition. That is,

x× (y + z) = x× y + x× z for all numbers and variables x, y and z,

and

(x+ y)× z = x× z + y × z for all numbers and variables x, y and z.

Exercise 2.5. Choose numerical values for the quantities (x, y, and/or z)
appearing in Rules 5, 6 and 9. Use your calculator to find the value of each side of
the equation and verify that the equation is valid for these numbers.

There are many number systems that satisfy these nine rules beyond the the
integers, rationals and reals. We have already mentioned the complex numbers.
Another interesting set of examples are the finite number systems: the integers
mod m. The set of numbers in this system are {0, 1, 2, . . . ,m−1}. Two numbers in
this number system are added or multiplied as integers and, if the result is greater
than m−1, m is subtracted from the result as many times as need to get a number
in {0, 1, 2, . . . ,m − 1}. More precisely x +m y and x ×m y are the remainders of
x+ y and x× y when divided by m. Computing in these systems is called modular
arithmetic. When m is a prime all nine of the above rules hold and one can do
algebra in as usual in these number systems. But, when is not a prime, not all of
the rules hold. Specifically, multiplicative inverses do not exist for some numbers
in the system.

Exercise 2.6. Consider the integers mod 5 and then the integers mod 6:

(i) Fill out an addition table and a multiplication table.
(ii) For each non-zero number, list its additive inverse.

(iii) For each non-zero number, list its multiplicative inverse.

One of the special features of “our” number systems (the integers, rationals and
reals) that distinguish them from the complex numbers and the modular numbers
is the concept of positive numbers.

Positive Numbers. The positive numbers in each of our three number systems
are the numbers that appear to the right of 0 when the number system is pictured
on the number line. Positive numbers have several useful properties:

(i) The positive numbers are closed under addition (if x and y are positive
then x+ y is positive).

(ii) The positive numbers are closed under multiplication (if x and y are
positive then x× y is positive).

(iii) If x is positive then so is its multiplicative inverse.
(iv) For every number x exactly one of the following holds:

(a) x = 0;
(b) x is positive;
(c) x is negative, that is −x is positive.

(v) The positive numbers enable us to define the relations < and >: we write
x < y, if y − x is positive and x > y, if x− y is positive.
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Next we define the shortcut operation of subtraction in terms of addition and
the shortcut operation of division in terms of multiplication.

Definition of Subtraction. x − y is defined to be x + (−y). That is, x − y is x
plus the additive inverse of y.

Since addition is associative and commutative, and using the property of the
additive inverse, we see that

(x− y) + y = (x+ (−y)) + y = x+ ((−y) + y) = x+ 0 = x.

This shows that x− y is the quantity that when added to y gives x.
Note that there is a subtle difference between the operation of subtraction and

the operation of taking the additive inverse, though both are denoted with a minus
sign. Scientific calculators distinguish these operations by two different keys: (-)
for the additive inverse and − for subtraction.

Exercise 2.7. Enter each of the following expressions in your calculator. Some
might result in an error message. Try to predict in advance which expressions will
give an error message.

(i) 7−−5
(ii) 7(-)(-)5

(iii) 7−(-)5
(iv) 7(-)−5
(v) 7+−5
(vi) 7+(-)5.

Explain each case that result in an error message.

Definition of Division. x÷ y is defined to be x×
(

1
y

)
. That is, x÷ y is x times

the multiplicative inverse of y.
Multiplication is associative and commutative, and by using the property of

the multiplicative inverse, we see that

(x÷ y)× y =
(
x×

(
1
y

))
× y = x×

((
1
y

)
y

)
= x× 1 = x.

This shows that x÷ y is the quantity that when multiplied by y gives x.
Scientific calculators usually have a key for the operation of division, ÷, and a

separate key, x−1 for the operation of taking the multiplicative inverse. On some
calculators, the multiplicative inverse, of say 5, is found using the key strokes 5∧(-)1.

Exercise 2.8. To do the following calculations on your calculator. Some might
result in an error message. Try to predict in advance which expressions will not
give an error message and explain in words the calculated result.

(i) 35÷ 7
(ii) 35× 7−1

(iii) 35 ÷ (-)7
(iv) 35(-) ÷7
(v) 35÷ 7−1

(vi) 35−1 ÷ 7

There are many shortcuts that we use when we play the game of algebra; we
list several below. We are all used to using them without a thought. However, we
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claim to have given a complete set of rules. So, you are playing by these rules and
replace −(−x) by x your “opponent” might claim a foul! Unless, of course, you can
explain just how the rules permit this move. Each of the shortcuts listed below can
be shown to be a consequence of the nine rules listed above. Some are easy to see
others are not so easy to see. We will verify a few of the more complicated ones
leaving the rest as an exercise.

Useful Facts and Shortcuts: Each of the following equations is valid for all
values of the variables x and y:

(i) the additive inverse of x is unique;
(ii) for x 6= 0, the multiplicative inverse of x is unique;

(iii) 0x = 0;
(iv) if xy = 0, then either x = 0 or y = 0;
(v) −x = (−1)× x;
(vi) −(−x) = x;
(vii) (−x)× (−y) = x× y;

(viii) (−x)× y = x× (−y) = −(x× y);
(ix) 1

−y = − 1
y ;

(x) −x−y = x
y (y 6= 0);

(xi) −xy = x
−y = −xy , (y 6= 0);

(xii) w ÷ x
y = w × y

x , (x, y 6= 0).

Proof. (i) Actually, Rule 4 does seem to indicate that the additive inverse of
x is unique by giving it the symbol −x. But, just suppose that there was another
additive inverse for x, call it w. That is, w+ x = x+w = 0 too. Now consider the
following string of equalities:

w = w + 0 = w + (x+ (−x)) = (w + x) + (−x) = (0) + (−x) = −x

So we were justified in denoting the additive inverse of x by −x. The proof that
the multiplicative inverse is unique is similar: assume x 6= 0 and wx = 1, then

w = w1 = w(xx−1) = (wx)x−1 = 1x−1 = x−1

To verify (iii), let w = 0x. Then w + w = 0x + 0x = (0 + 0)x = 0x = w. So
w + w = w; add −w to both sides to get:

w = w + w + (−w) = w + (−w) = 0.

Turning to (iv), assume that xy = 0. If x = 0 there is nothing to prove; so assume
that x 6= 0. We must show that, in this case, y = 0.

y = 1y = (
1
x
x)y =

1
x

(xy) =
1
x

0 = 0.

The following string of equalities verfies (v): −1x + x = −1x + 1x = (−1 + 1)x =
0x. �

Exercise 2.9. Verify the remaining seven shortcuts.

From now on we will freely use these shortcuts in our computations.
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2. Expanding, Simplifying and Solving

Two of the basic tactics for dealing with expressions and equations are ex-
panding and collecting like terms; combining these two operations is often called
simplifying. Consider the following equation:

(7 + x)(y − 4) = 3x− 7

Suppose that we wish to solve for the variable x. Our strategy is:
(i) first, expand the products;
(ii) next, move all terms involving x to one side and all terms not involving

x to the other;
(iii) then, factor out the x and
(iv) isolate it by dividing through by its coefficient.

Start by expanding the lefthand side using the distributive rule:
(7 + x)(y − 4) = 3x− 7

(7 + x)y + (7 + x)(−4) = 3x− 7
7y + xy + 7(−4) + x(−4) = 3x− 7

7y + xy − 28− 4x = 3x− 7
Next we collect all of the terms involving x on the left and all of the remaining
terms on the right:

7y + xy − 28− 4x = 3x− 7
xy − 4x− 3x = 28− 7− 7y

xy − 7x = 21− 7y
Factoring (using the distributive rule in reverse) x out of the left hand expression
and 7 out of the righthand expression gives:

xy − 7x = 21− 7y
(y − 7)x = 7(3− y)

Finally, dividing both sides by (y− 7), that is multiplying both sides by the multi-

plicative inverse of (y − 7),
1

(y − 7)
, we get:

(y − 7)x = 7(3− y)

x =
7(3− y)
y − 7

Until this last step, we made no restrictions on the values that the variable y could
take on. However, (y− 7) has an inverse only if it is a number different from 0. So
to carry out this last step, we must require that (y − 7) 6= 0 or y 6= 7.

Exercise 2.10. For y = 0, 4 and 1
2 , substitute this value for y then solve the

original equation, (7 + x)(y − 4) = 3x− 7 for x and compare those result with the

answers you get by substituting the value for y in x =
7(3− y)
y − 7

. Then evaluate

both sides of the original equation for the case y = 7 and explain why we cannot
solve for x.

In the above example, we explicitly stated when we use rules 8 and 9, the
existence of multiplicative inverses and the distributivity rule. But we use several
of the other rules, some several times. Work through that example and, for each
step, identify all rules that were used.

While the above example was designed to illustrate the power of algebra by
involving most of the rules of algebra, the best way to learn the rules and how to
use them is to start with a simple example using only one or two rules at a time.
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Exercise 2.11. In each case, carry out the instructions and list each rule or
rules that you used.

(i) Simplify (x− y) + (3y − x);
(ii) Solve 4(3a+ 1) = 8 for a;

(iii) Solve 17m+ w = 8 for w;
(iv) Solve 17m+ 3w = 8 for w;
(v) Solve 17a+ b = 8 for a;
(vi) Simplify 4× x× 3− 5x+ 3(y − x);
(vii) Solve 4× x× 3− 5x+ 3(y − x) = 0 for x;

(viii) Solve 3(x− y + 4) = 6 for x;
(ix) Expand (A+ b− 5)(4− P + x);
(x) Solve (A+ b− 5)(4− P + x) = 10 for the term AP ;
(xi) Solve (7 + x)(y − 4) = 3x− 7 for y.

3. Substitution

Another very useful technique for solving equations and simplifying expressions
is substitution, replacing a single variable by an expression. We illustrate with a
very simple example:

Solve the system of equations x+ y = 3 and x− y = 2.

We start by solving the first equation for x to get x = 3 − y. Then we substitute
3− y for the x in the second equation to get (3− y)− y = 2 or 3− 2y = 2. Solving
this equation for y gives y = 1

2 . And finally, substituting 1
2 for y in x = 3− y gives

x = 3− 1
2 = 5

2 . Checking we have 5
2 + 1

2 = 6
2 = 3 and 5

2 −
1
2 = 4

2 = 2.
One of the powers that algebra gives you is the power to generalize. Stepping

back and looking at this last problem we see that we have been given the sum and
difference of two numbers and asked to find the two numbers. We can solve all such
problems at one time:

Given that x+ y = S and x− y = D, find x and y in terms of the sum S and
the difference D. To do this we carry out exactly the same steps as we did when S
and D were the numbers 3 and 2:

Solving for x in the first equation, x = S − y.

So (S − y)− y = D, S −D = 2y and
S −D

2
= y.

Finally, x = S − S −D
2

=
2S
2
− S −D

2
=
S +D

2
.

We state the general solution to this problem:

If x+ y = S and x− y = D then x =
S +D

2
and y =

S −D
2

.

So for our first example, we can simply write down the solution: x =
3 + 2

2
=

5
2

and x =
3− 2

2
=

1
2

.
One of the wonderful features of algebra is that usually there are several differ-

ent ways to achieve the same result. To solve this system, x+y = S and x−y = D,
we could take advantage of the properties of equalities: adding them, we have
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(x + y) + (x − y) = S + D or simply 2x = S + D and x =
S +D

2
. Subtracting

them, we have (x+ y)− (x− y) = S −D or simply 2y = S −D and y =
S −D

2
.

Exercise 2.12. Solve each of the following systems of two equations in two
unknowns by substitution. Check your answers by graphing the two lines.

(i) 7x− 5y = 26, 2x− 3y = 3;
(ii) 21x− 16y = 11, 15x+ 4y = 6;

(iii) 21x− 15y = 1
4 , −14x+ 10y = 1

6 .

Substitution can also be used to systematically solve systems of three linear
equations in three unknowns, four equations in four unknowns and so on. The
strategy is straight forward:

(i) Solve the first equation for one of its variables in terms of all of the others.
(ii) Replace this variable in the remaining equations by its equal expression

involving the other variables.
(iii) You now have one equation solved for your selected variable and a system

equations with one fewer equation and one fewer variable. Solve it for
the remaining variables and use their values to determine the value of
your selected variable.

(iv) Of course, this smaller system can be solved using this same strategy.
To illustrate we will solve the following system of four equations in four variables:
2w − 3x + y + z = 23
w + x + y + z = 10

5w − 4x + 3y − 2z = 3
5x − 3y + z = −11

Solving the first equation for z, we have:
z = 23− 2w + 3x− y

Substituting (23− 2w + 3x− y) for z in the second equation
w + x+ y + (23− 2w + 3x− y) = 10
and collecting like terms, gives:
−w + 4x = −13.

Then making this substitution in the third and forth equations yields the following
system of three equations in three variables:

−w + 4x = −13
9w − 10x + 5y = 49
−2w + 8x − 4y = −34

The first step in solving this system is solving the first equation for w:
w = 4x+ 13

Substituting (4x+ 13) for w in the second and third equations, we get:
26x + 5y = −68

− 4y = −8
Solving this system we have y = 2 and x = −3 . Then, putting these values into
w = 4x+ 13 give w = 1. Finally, evaluating z = 23− 2w+ 3x− y gives z = 10. So
our solution is

w = 1, x = −3, y = 2, z = 10.
While this method will always find the solution of a system of equations, if

there is one, it involves many, sometimes unpleasant, computations. Furthermore,
there are more efficient methods for solving systems of linear equations. However,
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we won’t pursue this any further since our interest here is to simply demonstrate
the power of the technique of substitution.

Exercise 2.13. Use the method of substitution to solve the following two
systems of linear equations.

(i)
5x + 6y − 2z = 4
5x + 9y + 14z = 9
−x − 15y + 14z = −2

(ii)

x − y + z − w = 0
x + y − z + w = 2
x − y − z − w = −2
x + y + z + w = 4

Reconsider the equation (7 + x)(y− 4) = 3x− 7 from the previous section and
assume that 3x+ y = 6 also holds. Solving the second equation for y (y = 6− 3x)
and substituting (6− 3x) for y in the first equation we get

(7 + x)(6− 3x+ 4) = 3x− 7.

Expanding the left side and simplifying:
(7 + x)(6− 3x+ 4) = 3x− 7

(7 + x)(10− 3x) = 3x− 770− 21x+ 10x− 3x2 = 3x− 7
−3x2 − 11x+ 70 = 3x− 7
−3x2 − 14x+ 77 = 0

3x2 + 14x− 77 = 0
The result is an equation in one variable. However, it is a quadratic equation. In
the next chapter we will consider quadratic equations and how to solve them. At
that time we will return to this problem.

Exercise 2.14. Solve this same system for a single quadratic equation in y.

4. Formulas

The techniques that we developed to simplify algebraic sentences were applied
only to very simple sentences. However, the formal rules of algebra enable us to
work with more complicated algebraic sentences that arise from applications. The
term formula is often applied to algebraic sentences that come from real world
applications. For example, the formulas for the perimeter and area of a rectangle:
P = 2` + 2w and A = ` × w (or A = `w), where ` denotes the length and w the
width of the rectangle.

� -

6

?
`

wA

Using our techniques, we may solve these formulas for any one of the variables.
For example, we may solve the perimeter formula for `. Start with P = 2` + 2w
and subtract 2w from both sides to get P − 2w = 2`. Next divide both sides by 2
and change the order to put the variable for which we are solving first:

` =
P − 2w

2
=

1
2

(P − 2w) =
1
2
P − w.
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Similarly, we may solve the area formula for w to get a formula for the width
of a rectangle that has area A and length `. Start with A = `w. Since ` is always
positive, we may divide both sides by ` (or multiply each side by 1

` ) to get: A
` = w

or w = A
` .

Exercise 2.15. A square with side length s is just the special case of a rectangle
where ` = w = s

(i) Give the formula for the perimeter P of a square in terms of s.
(ii) Solve that formula for s, that is, give the formula for the side length of a

square that has perimeter P .
(iii) Give the formula for the area A of a square in terms of s.
(iv) Give the formula for the area A of a square in terms of its perimeter P .
(v) Use your formula to find each square that has the number of units of

measure in its perimeter equal to the number of units squared in its area.
[Be careful, there are two solutions; find them both!]

(vi) Can you describe the squares that have the number of units of measure
in their perimeters greater than (less than) the number of units squared
in their areas?

Now consider the general rectangle and assume that the number of units of
measure in its perimeter equal to the number of units squared in its area. What
can we say about ` and w? We have

`w = 2`+ 2w or `w − 2`− 2w = 0

One of the standard “tricks” used by those who play algebra often is completing the
product. We may recognize that the left hand side consists of three of the terms of
the expansion of the product (`− 2)(w − 2) = `w − 2`− 2w + 4. So if we add 4 to
both sides of `w− 2`− 2w = 0, we get `w− 2`− 2w+ 4 = 4 or (`− 2)(w− 2) = 4.
If we require ` and w to be whole numbers (` − 2)(w − 2)must be a factorization
of 4: (` − 2) = 1 and (w − 2) = 4 or (` − 2) = 2 and (w − 2) = 2 or (` − 2) = 4
and (w − 2) = 1. So the only integer sided rectangles with the number of units of
measure in its perimeter equal to the number of units squared in its area are the
4× 4 square and the 3× 6 rectangle.

Exercise 2.16. Consider the rectangle pictured above.
(i) Attack the above problem by directly solving `w = 2`+2w for ` in terms

of w and again find all integer solutions.
(ii) Use your formulas for the area and perimeter of a rectangle to find each

rectangle that has the number of units of measure in its perimeter equal
to twice the number of units squared in its area and has ` and w whole
numbers. What if we permit fractional dimensions?

(iii) Use your formulas for the area and perimeter of a rectangle to find each
rectangle that has twice the number of units of measure in its perimeter
as the number of units squared in its area and has ` and w whole numbers.
What if we permit fractional dimensions?

Thinking of our two equations P = 2` + 2w and A = `w as a system we may
“solve” this system for any two variables in terms of the remaining two. They are
already solved for P and A. To solve for A and w, we start with the equations
w = 1

2P − ` and ` = 1
2P − w derived above. Substituting 1

2P − w for ` in A = `w

gives A = 1
2Pw − w × w = 1

2Pw − w
2. So our new system is:
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A = 1
2Pw − w

2 and w = 1
2P − `.

Exercise 2.17. Solve the system P = 2`+ 2w and A = `w for P and `

If we attempt to solve this system for ` and w in terms of A and P , something
strange happens. Start with the equations w = 1

2P − ` and ` = A
w , derived above

and substitute A
w for ` in the first equation to get w = 1

2P −
A
w . Then multiplying

both sides by w and moving all terms to the left side, we get: w2 − P
2 w + A = 0.

Similarly, solving for ` in terms of P and A yields `2 − P
2 ` + A = 0. So ` and w

are both solutions to the same quadratic equation x2− P
2 x+A = 0. Evidently this

equation has two solutions. At this point, we cannot solve a quadratic equation; so
we will return to this problem in the chapter on quadratic equations.

We close this section by using the area formula to illustrate a few of the formal
rules of algebra. Two of the simplest rules for multiplication are commutativity
and associativity: we may change the order of multiplying numbers and variables
without changing the over-all product. For example,

2A = 2(`w) = (2`)w = `(2w).

but each of the terms on the right has a different interpretation: 2A or 2(`w) simply
indicates the number equal to twice the area of of the rectangle with length ` and
width w; (2`)w, on the other hand, represents the area of the rectangle with length
2` and width w while `(2w) represents the area of the rectangle with length ` and
width 2w. One easily sees that they all represent areas of equal value.

� -

6

?
2`

wA A

� -

6

?
`

2w

A

A

Next we illustrate distributivity. Suppose that we extend the length of the
rectangle by 2 units. How will the area change? Let N denote the area of the new
rectangle and A the area of the original rectangle. By distributivity N = (`+2)w =
`w + 2w = A+ 2w:

� -

6

?
` 2

wA

So the area added by extending the length by 2 units is 2w, the area of a 2 × w
rectangle.

What if we extend the length by 2 and the width by 3? by distributivity we
have: N = (` + 2)(w + 3) = `w + 3` + 2w + 6. Geometrically this means that the
new rectangle should decompose into four rectangles with areas A = `w, 3`, 2w
and 6:
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� -
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` 2

w

3

A

Exercise 2.18. Consider the `× w with ` > w > 2 and alter it by increasing
its length by 2 and decreasing its width by 2. How are the perimeter and area
altered? Are they increased or decreased? Identify the old and new rectangles in
the following diagram.

� -

6

?
` 2

w

2

A

Exercise 2.19. Consider the `× w with ` > w > 0 and alter it by decreasing
its length by x and increasing its width by x. How are the perimeter and area
altered? Are they increased or decreased? Draw a diagram and Identify the old
and new rectangles. What value of x would make the area largest?

5. Working with Exponents

In Chapter 1, we introduced exponential notation x2 for x×x, x3 for x×x×x
and in general xn for n copies of x multiplied together. In addition to being a
convenient shorthand notation, some computations become simpler in exponential
notation. Consider x5 × x4. By direct count this is 9 copies of X multiplied
together. In general, xn × xm = xn+m, again by direct count. Also by a direct
count (x4)3 = x4 × x4 × x4 = x12 = x4×3 and, in general, (xm)n = xmn. So our
two basic rules for working with exponents are:

Rules for exponents.
(i) xn × xm = xn+m;
(ii) (xm)n = xmn.

Exercise 2.20. Using the above rules, commutativity and associativity of mul-
tiplication and distributivity, expand and simplify each of the following:

(i) x3y4 × y5x6

(ii) (x3y4)2

(iii) (x3y4)3

(iv) x3y4(x3y5 + y4x6)
Rather than expanding that last expression, we may choose to simplify by pulling
out front as many powers of x and y as possible. Simplify each of the remaining
expressions in this way.

(v) x3y4(x3y5 + y4x6)
(vi) 3x15y24(6x13y14 − 9y5x6)

Now we wish to extend our definition of xn to values for n other than 1, 2, . . . ,
and we want to do so in such a manner that the above rules of exponents still hold.
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Let’s start with x0. We insist that x0 × xn = x0+n = xn. Hence we must define
x0 to be 1 for every variable or number x with one exception x = 0. We treat the
expression 00 as undefined. Next consider x−1. We have already defined this to be
1
x , again with the proviso thar x 6= 0. Is this definition consistent with our rules for
exponents? One easily checks that x−1 × xn = 1

xx
n = 1

xxx
n−1 = xn−1 as the rules

predict. We can interpret x−2 in two ways:

x−2 = x−1 × x−1 =
1
x

1
x

=
1
x2

or x−2 = (x2)−1 =
1
x2
.

In general, defining x−n = 1
xn whenever x 6= 0, is consistent with all of the rules.

Exercise 2.21. Assuming x, y 6= 0, simplify each of the following expressions.
(i) x−3y4 × y−5x6

(ii) (x−3y4)−2

(iii) (x3y4)2

y−5x6

(iv) x−3y4(x3y−5 + y4x6)
Rewrite each of the answers to the above in two ways: First, with out fractions using
positive and negative exponents as needed; second with only positive exponents
using fractions as needed.

We can extend the definition of exponents even further. Consider 2
1
2 . To be

consistent with the rules we must insist that (2
1
2 )2 = 21 = 2. So 2

1
2 must equal

√
2.

Actually, there are two possible choices for 2
1
2 : 2 and -2. In general x

1
2 , will only

be defined when x ≥ 0 and then it will be defined to be the positive square root√
x. For fractional exponents, we will adopt the convention that whenever there is

a choice, we will always choose the positive interpretation. Sometimes there is no
choice: (−8)

1
3 = −2 not 2.

Exercise 2.22. Assuming x, y > 0, simplify each of the following expressions.
(i) x−3y

1
4 × y−8x

1
6

(ii) (x−3y4)−
1
2

(iii) (x3y4)
1
2

y−5x6

(iv) x−
1
3 y

1
4 (x3y−5 + y4x6)

By a rational expression we mean a quotient of simpler algebraic expressions; for
example, (x3y4)

y−5x6 . We add or subtract rational expressions using the same technique
that we use to add or subtract rational numbers: rewrite the expressions with a
common denominator.

1
x

+
1
y

=
y

xy
+

x

xy
=
x+ y

xy
.

Exercise 2.23. Write each of the following sums as a single fraction:
(i) 1

x −
1
y ;

(ii) 1
x + 1

y + 1
z ;

(iii) 1
xy + 1

yz + 1
xz ;

(iv) 1
xy2 − 1

x3y ;
(v) 1

1−x −
1

1+x ;
(vi) 1

1−x −
1

1+x + 1
1−x2 .
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There are some important applications of algebra that require us to reverse this
process, that is, to take a rational expression and rewrite it as the sum of simpler
rational expressions. For example, the expression x

(x−2)(x+1) can be rewritten in
the form a

x−2 + b
x+1 . The problem is to find the a and b. To do this we combine

a
x−2

b
x+1 over a common denominator, set the numerator equal to x and solve for

a and b:
a

x− 2
+

b

x+ 1
=

ax+ a

(x− 2)(x+ 1)
+

bx− 2b
(x− 2)(x+ 1)

=
(a+ b)x+ (a− 2b)

(x− 2)(x+ 1)
.

Setting (a + b)x + (a − 2b) = x gives us the system of equations a + b = 1 and
a − 2b = 0. So a = 2b and substituting 2b for a in the first equation gives b = 1

3

and a = 2
3 . We have:

x

(x− 2)(x+ 1)
=

2
3

x− 2
+

1
3

x+ 1
or

2
3(x− 2)

+
1

3(x+ 1)
.

The result of applying this process is called a resolution into partial fractions.

Exercise 2.24. Resolve each of the following rational expressions into partial
fractions:

(i) 2
(x−2)(x+1) ;

(ii) x−1
(x−2)(x+1) ;

(iii) x−1
(x−2)(x+1)(2x−1) ;

(iv) x2−1
(x−2)(x2+1) .

Exercise 2.25. Consider the following “proof” that 1=2:
Let a = b, that is these variables must take on the same value, but that otherwise
that common value is unrestricted. We may multiply both sides by a to get:

a2 = ab.
We may then subtract b2 from both sides to get:

a2 − b2 = ab− b2
Now factor both sides

(a− b)(a+ b) = (a− b)b
and divide both sides by (a− b) to get:

a+ b = b.
At no time in this sequence of operations did we constrain the common value of a
and b; so we may set a = b = 1 and conclude:

2 = 1!
Explain the flaw in this derivation and state the moral of this story.

Historical Note. Who was the first algebracist? Some say Diophantus is “The
Father of Algebra”. Diophantus lived in Alexandria, Egypt sometime in the early
centuries AD. Others give the honor to al-Khwarzimi from Baghdad, who lived
from around 780 to around 830 AD. Search the web for information on Diophantus
and al-Khwarzimi.





CHAPTER 3

Quadratic Equations

1. Squares and Square Roots

For any positive number x, x2 = x × x is a positive number. If x is negative
then x2 = x× x = −x×−x is also positive. For example ( 1

2 )2 = 1
4 and (−3)2 = 9.

We note that two different numbers, any positive number and its negative, have
the same square; for example, (− 1

2 )2 = 1
4 = (1

2 )2. Hence if you know the square of
a number, there are two possible values for the number itself; for example x2 = 4
has two solutions, x = 2 and x = −2. Specifically, the equation x2 = a has two
solutions when a > 0; it has one solution when a = 0 and it has no solutions when
a < 0. We write

√
a for the positive solution to x2 = a when a > 0, we have

√
0 = 0

and, when a < 0, we say that
√
a is an imaginary number or has no real number

solution. In the case that a is positive, the negative solution to x2 = a is simply
−
√
a and we often write ±

√
a to indicate the set of both solutions to x2 = a.

Exercise 3.1. Explain the following:

(i)
√
x may not be defined, but when it is, we have (

√
x)2 = x;

(ii)
√
x2 is always defined but may not equal x.

For a number x, |x| (called the absolute value of x), is defined to be x when x ≥ 0
and the positive number −x when x < 0. Hence,

√
x2 = |x|.

The operation of taking the positive square-root of a positive number is different
in several ways from the operations that we have studied so far. First of all when you
add, subtract or multiply whole numbers you always get a whole number and when
you add, subtract, multiply or divide fractions you always get another fraction. In
contrast, the square-root of a positive whole number or fraction may be an entirely
different kind of number: it will be a real number but it may not be a rational

number. For example,
√

2 and
√

1
2 are not rational numbers. Real numbers that

are not rational numbers are called irrational numbers and they have infinite, non-
repeating decimal expansions.

To work with square-roots, we need to know the rules that they must follow.

Rule 10. If a is non negative and b is positive then:

(i)
√
a×
√
b =
√
a× b;

(ii)
√
a√
b

=
√

a
b .

Actually these rules follow from the first nine rules, but the derivation is straight
forward and will be left as an exercise. It is not only important to know the rules
that hold for square-roots; we need to know that some “rules” that you might think
should hold really don’t. If a and b are positive numbers then:

(i)
√
a+
√
b 6=
√
a+ b;

39
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(ii)
√
a−
√
b 6=
√
a− b.

Suppose that
√
a +
√
b and

√
a+ b were equal; then their squares would be

equal. We have:
(
√
a+
√
b)2 = (

√
a+
√
b)× (

√
a+
√
b)

=
√
a×
√
a+
√
a×
√
b+
√
b×
√
a+
√
b×
√
b

= a+ 2
√
ab+ b

This will equal a+ b, the square of
√
a+ b, only if 2

√
ab = 0, that is only if at least

one of a or b were 0.

Exercise 3.2. Prove Rule 10 (i)

Exercise 3.3. Prove Rule 10 (ii)

Exercise 3.4. Prove that
√
a−
√
b 6=
√
a− b.

Working with square-roots may seem complicated at first. But after learning a
few very simple tricks it becomes relatively east - maybe even fun, Think of the set
of all rational numbers. They are closed under addition and multiplication. That
is, if we carry out normal arithmetic operations (excluding √ ) with some rational
numbers, the end result is always another rational number. We can build another
closed number system by adjoining a specific square-root, say

√
5. So we look at

all numbers of the form a+ b
√

5 where a and b are rational numbers (e.g. 1−
√

5
or 4

7 + 3
√

5
4 ). We wish to show that this set of numbers is closed under all of our

basic operations. Clearly, it is closed under addition:

(a+ b
√

5) + (c+ d
√

5) = (a+ c) + (b+ d)
√

5).

Closure under multiplication is a bit more complicated:

(a+ b
√

5)× (c+ d
√

5) = ac+ ad
√

5 + bc
√

5 + bd
√

5
2

= (ac+ 5bd) + (ad+ bc)
√

5.

The other requirement of a closed system is the existence of inverses. Additive
inverses are obvious: the additive inverse of a+ b

√
5 is −a+ (−b)

√
5. But how do

we see that, when a+ b
√

5 6= 0, 1
a+b
√

5
is actually a number of the form c+ d

√
5?

1
a+ b

√
5

=
a− b

√
5

(a+ b
√

5)(a− b
√

5)
=

a− b
√

5
(a2 − 5b2)

=
a

(a2 − 5b2)
− b

(a2 − 5b2)

√
5.

In other words:

(a+ b
√

5)× (
a

(a2 − 5b2)
− b

(a2 − 5b2)

√
5) = 1.

There is one fine point to this proof: we multiplied and divided by a − b
√

5 We
took care to be sure that a+ b

√
5 6= 0, but how can we be sure that a− b

√
5 6= 0?

Well suppose that a − b
√

5 = 0 or a = b
√

5. The left-hand side is rational; the
right-hand side is irrational unless b = 0. In that case a = 0 too and a+ b

√
5 = 0.

So, if a+ b
√

5 is not equal to 0 then so is a− b
√

5.

Exercise 3.5. Verify that a
(a2−5b2) −

b
(a2−5b2)

√
5 is the multiplicative inverse

of a+ b
√

5 by multiplying out the left hand side of the last equation.

Exercise 3.6. Simplify each of the following expressions, that is write them
in the form a+ b

√
5 where a and b are rational.

(i) 4× (1 +
√

5) + (3− 2
√

5)
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(ii) (1 +
√

5)× (3− 2
√

5)
(iii) (3− 2

√
5)÷ (1 +

√
5)

(iv) (1 +
√

5)2

As we noted at the start of this section, the rational numbers are not closed
under square-roots, that the square-root of a rational number may not be another
rational number. But sometimes it is and then we say that the number is a perfect
square 1

4 and 16 are perfect squares. The same is true of our new number system:
most numbers of the form a + b

√
5 are not perfect squares but some are. For

example, 6− 2
√

5 is a perfect square. To check this we write 6− 2
√

5 = (x+ y
√

5)2

and try to figure out how to choose x and y so that this equality holds. Expanding
(x + y

√
5)2 we get x2 + 5y2 + 2xy

√
5 and we see that we must choose x and y so

that x2 + 5y2 = 6 while 2xy = −2. There are two obvious choices x = 1 , y = −1
and x = −1 , y = 1 giving 1−

√
5 and its negative −1 +

√
5 as the two square-roots

of 6− 2
√

5.

Exercise 3.7. Compute
√

1 + 4
√

5
9

2. The Solution Set of a Quadratic Equation

In the last chapter, we came across the quadratic equation x2 − P

2
x + A = 0,

where P and A were the perimeter and area of a rectangle. The two solutions to
this quadratic equation were then the length and width of that rectangle. To see
that this is true, we observe that

(x− `)(x− w) = x2 − x`− xw + `w = x2 − (`+ w)x+A = x2 − P

2
x+A

and note that x2− P
2
x+A equals zero if and only if one of (x− `) or (x−w) equals

zero, that is, if and only if x = ` or x = w.
To be very precise, we define a quadratic equation in the variable x to be an

equation of the form ax2 + bxy+ c = 0, where a b and c are constants and a 6= 0. A
solution to ax2 +bx+c = 0 is called a zero of the quadratic polynomial ax2 +bx+c
In general, the quadratic equation ax2 + bx + c = 0 has a solution if and only if
the expression ax2 + bx+ c can be factored. Before we show this, we note that by
dividing through by a, yields the simpler quadratic equation x2+Bx+C = 0, where

B =
b

a
and C =

c

a
. Furthermore, the two quadratic equations ax2 + bx + c = 0

and x2 +Bx+ C = 0 have exactly the same solutions.
First assume that x2 + Bx + C can be factored, that is, x2 + Bx + C =

(x− r)(x− s) for the numbers r and s. Then by substitution we see that if x = r,
i.e. if x − r = 0, we have x2 + Bx + C = (x − r)(x − s) = 0. So r is a solution to
x2 + Bx+ C = 0. By a similar argument s is also a solution. Now suppose that t
is any other number. Then t2 +Bt+C = (t− r)(t− s) and since both (t− r) and
(t− s) are different from 0, (t− r)(t− s) is different from 0 and t is not a solution!

Next observe that, if r is a solution to x2 + Bx + C = 0 then −B − r is also
a solution. To show this we must show that (−B − r)2 + B(−B − r) + C = 0.
Expanding and simplifying we have

(−B − r)2 +B(−B − r) + C = B2 + 2Br + r2 + (−B2 −Br) + C
= r2 +Br + C
= 0
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Finally, we observe that, if r is a solution to x2 +Bx+C = 0 then x2 +Bx+C =
(x− r)(x− s) where s = −B − r. Before we multiply this out we note that since r
is a solution r2 +Br + C = 0 and C = −r2 −Br.

(x− r)(x− s) = (x− r)(x+B + r)
= x2 + xB + xr − rx− rB − r2
= x2 +Bx+ (−r2 −Br)
= x2 +Bx+ C

To summarize we have shown:
(i) If x2+Bx+C = (x−r)(x−s) then r and s are the zeros of x2+Bx+C and

the solutions to x2 +Bx+ C = 0 and they are the only zeros/solutions.
(ii) If r is a zero of x2 +Bx+C then s = −B−r is also a zero of x2 +Bx+C.

(iii) If r is a zero of x2 + Bx + C then x2 + Bx + C = (x − r)(x − s) where
s = −(B + r).

(iv) x2 +Bx+ C = 0 has at most two solutions.

Exercise 3.8. In each case, you are given one zero of a quadratic expression.
First, verify that it is a zero by substitution then find the other zero and finally
write out the factorization of the quadratic expression.

(i) x2 + 2x− 3, r = 1;
(ii) x2 + 1

2x− 3, r = −2;
(iii) x2 − 2x− 3, r = −1;
(iv) 2x2 + 4x− 6, r = −3;
(v) 2x2 + x− 6, r = 3

2 ;

3. Finding the Solution Set of a Quadratic Equation

We now understand the nature of the solutions to a quadratic equation. But
we still don’t know how to find those solutions! Before we can describe the general
method for solving a quadratic, we must consider two special cases.

Suppose that s = r above. Then (x − r)2 = x2 − 2rx + r2. We say that r is
a double zero and that the quadratic expression is a perfect square. We can easily
recognize when a quadratic has a double zero:

x2 +Bx+ C has a double zero if and only if C = B2

4

and r = −B2 is that double zero.

Next suppose that s = −r. Then (x− r)(x− (−r)) = (x− r)(x+ r) = x2− r2;.This
special case is even easier to recognize since B = 0 and C ≤ 0

The zeros of x2 +Bx+ C are negatives of one another if and only if B = 0
and C ≤ 0, furthermore r = ±

√
−C are those zeros.

Exercise 3.9. Solve each of the following quadratic equations or explain why
it has no solution.

(i) x2 + 4x+ 4 = 0;
(ii) x2 − 7x+ 49

4 = 0;
(iii) x2 − 4 = 0;
(iv) x2 + 4 = 0;
(v) x2 = 4;
(vi) x2 = −4;
(vii) 4x2 − 49 = 0;
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The fourth and sixth equations in the last exercise have no solution. We show
that as follows. Suppose that r is a solution. Then r2 + 4 = 0 or r2 = −4. But, for
every number r, positive or negative, r2 ≥ 0. So neither x2 = −4 nor x2 + 4 = 0
has a solution.

Exercise 3.10. In each case add a constant to both sides of the equation so
that the quadratic expression on the left becomes a perfect square.

(i) x2 + 6x = 0;
(ii) x2 + 6x+ 3 = 0;

(iii) x2 + 6x− 3 = 0;
(iv) x2 + 6x+ 13 = 0;
(v) 4x2 − 48x = 0;

The above technique is called completing the square.
We can now describe a method for solving any quadratic equation and we

illustrate this method with x2 − 7x− 5 = 0

Step 1. Move the constant term to the right hand side of the equation: x2 −
7x = 5.

Step 2. Add to both sides the constant that completes the square on the left
side: x2 − 7x+ 49

4 = 5 + 49
4 .

Step 3. write the left side as a perfect square and simplify the right side:
(x− 7

2 )2 = 69
4 .

Step 4. If the right side is negative, there is no solution; if the right side is 0
or positive, take the square root of both sides: (x− 7

2 ) = ±
√

69
2 .

We can report the answer in several ways:
x = 7

2 ±
√

69
2 ;

x = 7
2 −

√
69
2 or x = 7

2 +
√

69
2 ;

the zeros of x2 − 7x− 5 are 7
2 −

√
69
2 and 7

2 +
√

69
2 .

4. The Quadratic Formula

One of the important achievements of algebra is the development of a simple
formula for the zeros of any quadratic expression. The zeros of the general quadratic
expression ax2 + bx+ c are given by the quadratic formula:

x =
−b±

√
b2 − 4ac

2a

So, for example, take 3x2 + 4x− 4. By the formula we have

x =
−4±

√
16 + 48

6
=
−4± 8

6

or −12
6 = −2 is one zero and 4

6 = 2
3 is the other. They are easily seen to check:

3(−2)2 + 4(−2)− 4 = 12− 8− 4 = 0 and
3( 2

3 )2 + 4( 2
3 )− 4 = 4

3 + 8
3 − 4 = 0.

To derive the quadratic formula we simply solve ax2 + bx + c = 0 by the method
of completing the square:
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ax2 + bx+ c = 0
x2 + b

ax+ c
a = 0

x2 + b
ax+ = − c

a

x2 + b
ax+ ( b

2a )2 = ( b
2a )2 − c

a

(x+ b
2a )2 = b2−4ac

4a2

x+ b
2a = ±

√
b2−4ac
2a

x = −b±
√
b2−4ac
2a

The expression b2− 4ac is called the discriminant of the quadratic expression. If it
is negative, its square root is imaginary and there are no real number solutions; if it
is 0, there is just one double root; if it is positive, there are two distinct solutions.

Exercise 3.11. Solve each of the following quadratic equations

(i) x2 − 4x− 21 = 0;
(ii) x2 − 11x− 21 = 0;

(iii) 6x2 − 11x− 7 = 0;
(iv) 6x2 − 11x+ 6 = 0;
(v) 6x2 − 11x+ 5 = 0

At this point we can return to our area-perimeter problem from the last chapter.
The problem was to find the length and width of the rectangle with perimeter P
and area A or show that no such rectangle exists. We showed that the length

and width were the solutions to the quadratic equation x2 − P

2
x + A = 0. The

discriminant or this quadratic is P 2

4 − 4A. We conclude that there is not rectangle
with perimeter P and area A whenever P 2

4 − 4A < 0, that is whenever P 2 < 16A.
When P 2 = 16A, such a rectangle exists and it is a square with sides of length P

4 .
Finally, when P 2 ≥ 16A there is such a rectangle and its dimensions are

` =
P +

√
P 2 − 16A
4

and w =
P −

√
P 2 − 16A
4

.

For example the 3 × 5 rectangle has perimeter P = 16 and area A = 15 and from
these two parameters we may recover its dimensions:

` =
16 +

√
162 − 16× 15

4
=

16 + 4

4
= 5 and w =

16−
√

162 − 16× 15

4
=

16− 4

4
= 3.

Exercise 3.12. Complete the following table of rectangle dimensions:
P A ` w

25 35

24 36

25 40

25 6

25 1.24
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5. The Formula of Pythagoras

Theorem 1. The length of the hypotenuse of a right triangle with legs of length
a and b is given by the formula

a2 + b2 = c2

.

�
�
�
�
�
�
�
��

c b

a

Proof. To begin, consider Figure 3.1. We know that the area of the outer
square is AO = (a + b)2 = a2 + 2ab + b2. We also know that the area of the inner
square is AI = c2 and that the area of each triangle is AT = 1

2ab. So we have

AO = AI + 4AT

a2 + 2ab+ b2 = c2 + 4
(

1
2
ab

)
a2 + 2ab+ b2 = c2 + 2ab.

Thus subtracting 2ab from both sides, we have a2 + b2 = c2. �

•

•

• • •

•

••

a

b a

b

a

ba

b
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c

77
77
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77

77
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c

77777777777777

c

Figure 3.1. A Proof of the Pythagorean Theorem

Exercise 3.13. As above, a and b denote the lengths of the legs of a right
triangle and c denotes the length of the hypotenuse.

(i) Find c if a = 5 and b = 12.
(ii) Find a if b = 4 and c = 5.

(iii) Find all possible right triangles with legs of equal length and 2 units less
than the hypotenuse.

(iv) Find all possible right triangles with c =
√

7 and having one leg one unit
longer than the other.

Exercise 3.14. 1 This exercise gives a geometric construction of the square
root of a number given as a length. Consider Figure 3.2 below. Let x be the positive

1Adopted from (Ian Stewart, Faggot’s fretful fiaso, in Music and Mathematics: From
Pythagoras to Fractals, Edited by John Fauvel, Raymond Flood, and Robin Wilson, Oxford

University Press, 2003)
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number for which you wish to compute the square-root. Draw the segment AC with
interior point D so that |AD|, the length of the segment AD is x and the |DC| is
1. Construct the semicircle with AC as diameter and erect the perpendicular to
AC at D. Let B denote the intersection of this perpendicular and the semicircle.
Use the fact that the triangle ABC is a right triangle and express |BD|, in terms
of x. Specifically, carry out the following steps:

(i) write |AB|2 in terms of x and |BD|;
(ii) write |BC|2 in terms of |BD|;

(iii) apply the formula of Pythagoras to triangle ABC and simplify.

A

B

D← x→ C1

Figure 3.2. Square Root

6. Picturing Quadratic Functions

So far we have been considering quadratic equations (e.g. x2 − 6x + 8 = 0)
and computing their solutions (x = 2 and x = 4, in this case). But, it is natural to
think of a quadratic expression as a polynomial function: p(x) = x2 − 6x + 8 The
values of x that give p(x) = 0 are called the zeros of the polynomial p(x).

The graph of the quadratic function f(x) = ax2 +bx+c is a parabola. It opens
upward if a > 0 and opens downward when a < 0. The zeros of this polynomial
identify the points where the curve crosses the x axis. There are three possibilities
for the zeros: no zeros, one double zero or two distinct zeros. This leads to the six
possibilities pictured below:

a > 0,
no zeros

a > 0,
double zero

a > 0,
two zeros

a < 0,
no zeros

a < 0,
double zero

a < 0,
two zeros

In the next section, we will want to know just when a quadratic function is
positive, negative or zero. Once we picture the graph, such questions are easy to
answer:

• If a > 0 and f(x) has no zeros, f(x) is always positive.
• If a > 0 and f(x) has a double zero, f(x) is always positive except at the

zero.
• If a > 0 and f(x) has two zeros r < s, f(x) is always positive for x < r

and x > s, zero at r and s, and negative for r < x < s.
• If a < 0 and f(x) has no zeros, f(x) is always negative.



7. CALCULUS WITHOUT THE CALCULUS 47

• If a < 0 and f(x) has a double zero, f(x) is always negative except at
the zero.

• If a < 0 and f(x) has two zeros r < s, f(x) is always negative for x < r
and x > s, zero at r and s, and positive for r < x < s.

As an example consider f(x) = x2 − 6x+ 8 which has zeros 2 and 4. We conclude
that f(x) is positive for x < 2 and x > 4 and negative for x between 2 and 4:

Exercise 3.15. For each of the following quadratic functions, decide when
it takes on positive values and when it is negative. Then check your answers by
graphing the quadratic.

(i) f(x) = 4x2 − 12x+ 9
(ii) f(x) = −3x2 + 10x− 9

(iii) f(x) = 2x2 + 9x+ 11
(iv) f(x) = −x2 + 6x− 9
(v) f(x) = 2x2 + 9x− 5

(vi) f(x) = −3x2 + 10x− 3

7. Calculus without the Calculus

Consider the following problem: You are given a 20×20 grid; from each corner
you remove an m ×m grid (Here m is restricted to be a whole number.); folding
up the sides, you form an open topped box or tray. How should you choose m so
that the box will have the largest volume?

In the example pictured below, m = 4. The volume of the box will then be
4 × 12 × 12 = 576 cubic units. In general V (m) = m(20 − 2m)2. In the case
where m can be any real number, finding a value for m that gives the largest
volume is a typical calculus problem. However, it can be solved using only algebra.
The business community has long used the concepts of marginal cost and marginal
profit, the additional cost or profit from producing one more widget (or whatever
it is that they produce). We can easily adopt the technique of “marginals” to our
problem.
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Suppose we consider the box for a given m and ask the question: Should we
increase the value of m by 1? In other words: is the volume of the box made with
the (m+ 1)× (m+ 1) corners cut out larger than the volume of the box with the
m × m corners removed? To answer this question, we compute the difference in
volume:

V (m+ 1)− V (m) = (m+ 1)(20− 2m− 2)2 −m(20− 2m)2

= 12m2 − 148m+ 324.
So if for a given value of m 12m2 − 148m+ 324 is positive, we should increase the
value of m by 1, otherwise we should not and might even consider decreasing the
value of m by 1. To decide when 12m2 − 148m + 324 is positive and negative, we
solve for its zeros using the quadratic formula:

148−
√

1482 − 4× 12× 324
2× 12

and
148 +

√
1482 − 4× 12× 324

2× 12
The resulting zeros are approximately 2.8 and 9.5. Since the coefficient of m2 is
positive, 12m2 − 148m+ 324 will be positive for m equal 1 and 2 and for m > 9; it
will be negative for m = 3, 4, . . . , 9 So starting with 1, as m is increased by 1, the
volume will increase until we reach 3 after that it will decrease until we reach 10.
We have computed these volumes in the following table:

1 2 3 4 5 6 7 8 9 10
324 512 588 576 500 384 252 128 36 0

We could ask the same question for the 25× 25 grid or the 30× 30 grid; indeed
for the n× n grid for any n. Algebra enables us to solve this problem for all such
grids at the same time. The marginal change in volume for the n× n grid is given
by:

(m+ 1)(n− 2m− 2)2 −m(n− 2m)2 = 12m2 − (8n− 12)m+ (n− 2)2.

Applying the quadratic formula gives the zeros:

8n− 12−
√

16n2 − 48
24

or
8n− 12 +

√
16n2 − 48

24

Which simplify to 2n−3−
√
n2−3

6 and 2n−3+
√
n2−3

6 . We can fill in any value for n that
we wish. When n is reasonably large, we can estimate these zeros by ignoring the
-3 under the radical sign to get n

6 −
1
2 and n

2 −
1
2 . So the volume should increase as
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m increases until m reaches about n
6 then the volume will decrease until m reaches

its largest possible value, n
2 .

n 20 24 36 100 200
n
6 3.3 4 6 16.7 33.3

d 2n−3−
√
n2−3

6 e 3 4 6 17 33

The expression d 2n−3−
√
n2−3

6 e stands for the smallest integer greater than or equal
to 2n−3−

√
n2−3

6 . In general, the ceiling function d e rounds up to the next integer
and the floor function b c rounds down to the next integer.

Exercise 3.16. Solve the following problem: You are given a 20 × 30 grid;
from each corner you remove an m × m grid; folding up the sides you form an
open topped box. How should you choose m so that the box will have the largest
volume?

Exercise 3.17. Solve the following general problem: You are given an 20× n
grid; from each corner you remove an m×m grid; folding up the sides you form an
open topped box. How should you choose m so that the box will have the largest
volume?

Exercise 3.18. Solve the following general problem: You are given an n× 2n
grid; from each corner you remove an m×m grid; folding up the sides you form an
open topped box. How should you choose m so that the box will have the largest
volume?

Now let’s generalize the problem even further: You are given a 20× 20 square;
from each corner you remove an x × x square; folding up the sides you form an
open topped box. How should you choose x so that the box will have the largest
volume? Here we think of x as a continuous variable able to take on any real value
between 0 and 10. As before we will compute the marginal increase in volume. But
instead of requiring that we increase the value of x by 1, we will increase it by some
small but unspecified amount ε. The difference in volume is now:

V (x+ ε)− V (x) = (x+ ε)(20− 2x− 2ε)2 − x(20− 2x)2

= 12εx2 + (12ε2 − 160ε)x+ 4ε(ε− 10)2.

Exercise 3.19. Evaluate this last expression at ε = 1 and compare it with our
first computation of marginal change.

We interpret this two variable quadratic function
f(x, ε) = 12εx2 + (12ε2 − 160ε)x+ 4ε(ε− 10)2

as follows: if f(x, ε) > 0, then the volume of the box obtained by cutting (x+ ε) by
(x + ε) squares from the corners is larger than the volume of the box obtained by
cutting x by x squares from the corners. Now we find the zeros of this polynomial
treating ε as a constant:

160ε− 12ε2 ±
√

(160ε− 12ε2)2 − 4(12ε)(4ε(ε− 10)2)
24ε

.

this simplifies to
(4ε)(40− 3ε±

√
400− 3ε2)

24ε
.

Exercise 3.20. Check the simplification.
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At this point we think about choosing the size of the step ε. First we note
that if ε = 0, then f(x, 0) = 0 and the last expression above is undefined since
it involves division by zero. On the other hand, if ε > 0, however small, we may
simplify the zeros further to get 40−3ε−

√
400−3ε2

6 and 40−3ε+
√

400−3ε2

6 . We now ask
what happens to these zeros as ε gets closer and closer to zero. The first fraction
approaches 10

3 while the second approaches 10. We may conclude that whenever
x < 10

3 the volume may be increased by increasing x by a sufficiently small amount
but that whenever x > 10

3 any increase of x will decrease the volume. It follows that
we will maximize the volume by choosing x = 10

3 .
Calculus bundles this entire development into one simple operation: taking the

derivative of x(20− 2x)2 moves directly to the quadratic polynomial 12x2− 160x+
400 which has 10

3 and 10 as its zeros.

Exercise 3.21. You are given a w × w square; from each corner you remove
an x × x square; folding up the sides you form an open topped box. How should
you choose x so that the box will have the largest volume?

Exercise 3.22. You are given a `×w rectangle (` > w); from each corner you
remove an x × x square; folding up the sides you form an open topped box. How
should you choose x so that the box will have the largest volume?



CHAPTER 4

Understanding Estimation

1. Rounding

The following problem was on a NY State test.
It takes Maria about 7 minutes to play a song on the piano. About how long will it
take her to play it 3 times?

a. 10 minutes
b. 20 minutes
c. 30 minutes

One teacher concluded that since the possible answers were multiples of ten, stu-
dents were expected to round to the nearest tens. So rounding 7 to the nearest
tens gives 10 and 3× 10 gives an answer of 30! It is clear from this simple problem
that using rounding in numerical operations can lead to very strange conclusions.
To help understand what is actually going on, let’s review in some detail the basic
idea of rounding.

Suppose that our restaurant bill is $41.43 and we want to leave a tip of 15%.
Since .15× 41.43 = 6.2145, it’s not possible to tip exactly 15% of that amount. We
will need to either round down and leave a tip of $6.21 or round up and leave $6.22.
This type of situation arises regularly when dealing with monetary quantities, so
rounding is commonplace in everyday commerce. Whether the exact amount is
rounded up or down depends on the situation. If your grocer offers a special price of
$1.00 for three boxes of macaroni and cheese, you know you’re going pay $0.34 if you
buy just one box. If a bank pays interest on $127.85 at 4% compounded monthly,
the interest due at the end of the first month is theoretically 127.85 × .04/12 =
0.4261666... and the bank will very likely pay only $0.42.

The decimal representation of a number, say 964.198, is an abbreviation for the
number expanded in terms of powers of 10. That is,

9× 102 + 6× 101 + 4× 100 + 1× 10−1 + 9× 10−2 + 8× 10−3

This number has 6 decimal digits. The coefficient of 102 is called the hundred’s digit,
the coefficient of 10 is the ten’s digit, of 100 the unit’s digit, of 10−1 the one-tenth’s
digit, of 10−2 the one-hundredth’s digit, etc. The goal in rounding is to replace
a number having many decimal digits with one that is close to it and has fewer
decimal digits. A standard rounding method that is used in scientific calculations,
is to round to the nearest acceptable number. Using this type of rounding to the
nearest one-hundredth, all the numbers x that satisfy 6.21 < x < 6.215 are rounded
down to 6.21 and those that satisfy 6.215 < x < 6.22 are rounded up to 6.22. What
should be done with 6.215? Since numbers of the form 6.21d are rounded down
to 6.21 for d ∈ {0, 1, 2, 3, 4} and are rounded up to 6.22 for d ∈ {6, 7, 8, 9}, for the
sake of balance we will round up also in the case of d = 5. Unless stated otherwise,
we will use this method when rounding. With this method, the exact tip would

51
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be rounded to $6.21, because 6.21 is closer 6.2145 than is 6.22; the interest in the
example above would be rounded to $0.43 because 0.43 is closer to 0.4261666... than
is 0.42. If we round 964.198 to; the nearest unit, the result is 964, the nearest one-
tenth, the result is 964.2, the nearest one-hundredth, the result is 964.20. Notice
that after the last round, we have written the zero at the end of the number to
indicate that rounding was to the nearest one-hundredth. We explore this further
in the discussion below of significant digits.

Exercise 4.1. You were asked to round 8.3346 and you complied with 8.335.
But then you were told “No, I meant round to the nearest 100th.” So you rounded
8.335 to 8.34. Explain what went wrong!

Exercise 4.2. You are told that 57300 is the result of rounding the integer x
to the nearest 100.

(i) What is the largest integer that x could be?
(ii) What is the smallest integer that x could be?

(iii) How many different integers are possible for the exact value of x ?

Exercise 4.3. Because of the high price of copper, it costs almost 2 cents
to make a penny. Suppose that pennies were eliminated and all prices had to be
rounded to multiple of 5 cents. One assumes that all prices will be rounded up.
But assume that rounding is done to the nearest number of cents ending in 5 or 0
- call this the fair rounding scheme.

(i) Describe the fair rounding scheme for rounding to the nearest nickel.
(ii) Describe the fair rounding scheme for rounding to the nearest quarter.

Exercise 4.4. Consider rounding an integer to the multiples of 10 as a function
from the integers to the multiples of 10. This is a many to one function. How many
integers round to a specific multiple of 10 if

(i) you always round up;
(ii) you always round to the nearest multiple of 10 and all numbers ending

in 5 are rounded up;
(iii) you always round to the nearest multiple of 10 and all numbers ending

in 5 are so that the 10s digit is even.
(iv) experimentally discover which rounding rule is used by the round com-

mand on your calculator.

There are many reasons why one might wish to round to something other than
the nearest 10th, 100th, etc.; for example, to use a standard ruler we may wish to
round measurements given as decimals to measurements to the nearest 4ths, 8ths or
16ths. The following function will convert your calculator’s round into a function
that rounds to the nearest 1

4 : Y1(X) = round(4×X, 0)/4

Exercise 4.5. Check that this function actually works. Explain how it works.
Build a function that rounds to the nearest 8th, 16th, 3rd.

2. Approximations and Errors

When a number in decimal form is rounded to fewer digits, the rounded value
is an approximation to the original value. There are many situations where we
need to approximate the exact value of some quantity with another quantity. The
difference between these two quantities is the error in the approximation. That is,
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Error=Exact Value - Approximation

If any two of the values in this equation are known, the third is determined. The
error could be positive or negative depending whether the estimate is less than or
larger than the exact value.

Often, it is only the magnitude or size of the error that is of primary interest.
Thus, we use the absolute error, which is defined by the following equation.

Absolute Error = |Exact Value - Approximation|
The absolute error is thus simply the distance on the number line between the exact
value and the approximate value. The smaller the absolute error, the better the
approximation.

The error that occurs when approximating the exact tip by rounding it down
is: 6.2145− 6.21 = .0045. When rounding up the error is: 6.2145− 6.22 = −.0055.
The absolute errors in these cases are .0045 and .0055 respectively.

Besides monetary calculations, approximations are used when making physical
measurements and when doing calculator or computer calculations. Because a
computer or a calculator can work with only finitely many numbers, some sort of
truncation of decimals is needed when doing arithmetic operations.

In the real world, the magnitude of the error of an approximation, i.e. the
absolute error, that is tolerable depends on the situation. Clearly the tolerable
error in measuring a dose of liquid medicine is different from the tolerable error in
measuring the volume of water in Lake Ontario. The concepts of relative error and
relative absolute error are useful in such situations. These quantities are defined as
follows:

Relative Error =
Error

|Exact Value|
Absolute Relative Error =

|Error|
|Exact Value|

Exercise 4.6. View each of the following numbers as an approximation to the
exact quantity 876.5437. Using your calculator, compute in each case, the error,
the absolute error, the relative error and the absolute relative error.

(i) 876.5
(ii) 876.54

(iii) 876.543

Exercise 4.7. Using a standard ruler you measure the length of a piece of
paper at 9 and 7

8 inches to the nearest 1
8 inch. Assuming your measurement is

accurate:
(i) what is the maximum length that the paper could have?
(ii) what is the minimum length that the paper could have?

(iii) what is the largest the absolute error could be?
(iv) what is the smallest the absolute error could be?
(v) what is the largest the absolute relative error could be?
(vi) what is the largest the absolute relative error could be if you accurately

measure the width of the paper to be 4 and 3
8 inches.

3. Scientific Notation

Scientists have developed a convenient notation for working with numbers with
magnitudes that might be very large or very small. This variation of the usual
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decimal notation writes a decimal number in the form

a× 10b

where a is a decimal fraction with 1 ≤ |a| < 10 and b is an integer. The quantity a
is called the coefficient and is either positive or negative depending on whether the
number itself is positive or negative. The quantity b is called the exponent and can
also be positive or negative. With a restricted in this way, the notation is called
normalized scientific notation. For example, using scientific notation, the number
964.198 would be written as 9.64198× 102.

Typically, calculators and computers use some form of scientific notation to
display numbers whose magnitudes are very large or very small. However, instead
of showing 10 with its exponent, the display might simply indicate the exponent
with e. For example on the TI-84, if you change the mode from normal to sci
and enter 964.198 the result is 9.64198e2. Some calculators also use a variation
of this scientific notation, called engineering notation, in which the exponent b is
always a multiple of three. In engineering notation, 964.198 is already in standard
form. Engineering notation is designed so that numbers are always read in units,
thousands, millions, billions, thousandths, millionths, billionths, etc. For example
12345.678 in engineering notation is 12.345678e3 and is read as “12 point 345678
thousands.”

Exercise 4.8. Rewrite each of these numbers in scientific and in engineering
notation.

(i) 987654321
(ii) .0001234567

Exercise 4.9. Exactly which numbers will appear the same in scientific and
in engineering notation? Give a careful description of this set by describing it in
terms of intervals.

Exercise 4.10. Carry out the following computations by hand and report your
answer in both scientific and engineering notation.

(i) (8× 1017)(2× 106)

(ii)
(8× 1017)
(2× 107)

(iii)
(2× 107)
(8× 1017)

What numbers can calculators or computers work with? We know there are
infinitely many real numbers, but any computer can work with only finitely many
numbers. Think of these numbers as represented in scientific notation. Such a
number will then be of the form

±d0.d−1d−2 . . . d−k × 10b, where d0 ∈ {1, 2, . . . , 9} and d−i ∈ {0, 1, . . . , 9}.
Since every machine is finite, there will be some limit on the number of digits, k, and
another limit on the possible integer exponents, b. Such a number is called a floating
point number or a machine number. For the purposes of illustration, suppose we
have a small computer where k = 3 and |b| ≤ 3. How many numbers does this
computer have? There are two possibilities for the sign, nine choices for d0, ten
choices for each of d−1, d−2, d−3, and seven possible choices for b. The computer
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will also have the number 0, so it has a total of 9×103×7+1 = 63001numbers. The
largest number in the computer is 9.999× 103 = 9999. The next smaller number is
9.998×103, and the distance between these is 0.001×103 = 1. The smallest positive
number it has is 1.000×10−3 and the next larger number is 1.001×10−3 = 0.000001.
So numbers are bunched much more closely together near 0 than they are far to
the right on the number line. When an arithmetic operation is performed with two
of these computer numbers, the result will often not be one of the numbers in the
computer. So, it is rounded to the nearest number in the computer.

The TI84 and most computers and calculators carry in memory more digits than
they report. They do this to retain accuracy. They actually make computations
with the full set of digits in memory and after computations are perform they round
to the number of digits they report. The TI84 gives each of π and e to 9 decimal
places (reporting 10 digits). The following experiments show that the calculator is
actually keeping in its memory more than these 10 digits.

• Be sure that your calculator’s mode is set at normal and float.
• Enter π and then retype that number from the keyboard and store it

in memory P . So the key π represents the actual number stored in the
calculator while the key P represents the number that the calculator
reports for π.

• Do the same for e storing the displayed number in memory E.

Exercise 4.11. Compute and compare:
(i) π + e and P + E
(ii) π − e and P − E

(iii) π × e and P × E
(iv) π ÷ e and P ÷ E
(v) 3π and 3P

This last pair of computations tells us that the calculator rounded up when report-
ing the 10 digits of π. A simple trick will enable you to discover just how many
digits of π that your calculator actually has in its memory: Enter π−3 and return;
enter π − 3.1 and return; and so on.

Exercise 4.12. How many digits of a number does the TI84 display? How
many does it actually keep in memory? Find all of the digits that the TI84 actually
computes for

√
2.

Here is a general observation: If x is a number in the interval [a, b], then
the distance from x to the midpoint of the interval [a, b], (a + b)/2, is at most
(b− a)/2. From another point of view, either a or b, which ever is nearest x, gives
an approximation to x with absolute error at most (b− a)/2.

Consider a positive number x in decimal form. How far away from x is the
nearest machine floating number of the form above? If

x = (d0.d−1 . . . d−kd−(k+1) . . . )× 10b,

then the x falls in an interval between two floating point numbers with spacing
10b−k. Thus, from our general observation, the nearest floating point number is no
further from x than 1

2 × 10b−k. That is, the absolute error in approximating x by
the nearest floating point number is at most 1

2 × 10b−k. Because 1
|x| ≥ 10−b, the

relative error in this approximation is at most 1
2 × 10−k.
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4. Measurements and Significant Digits

The accuracy of a measurement of a physical quantity depends on the precision
of the measuring instrument and the ability of the technician to accurately read
the result. No measuring instrument is infinitely precise and two careful techni-
cians might read the result as slightly different. So the recorded measurement is
an approximation or estimate of the exact measurement. For example, when an
ordinary ruler is used to measure the length of the page of a book the end of the
page probably won’t fall exactly on a ruler mark. The measurer must then estimate
mark at the end of the page. If the page length falls between 20.3 cm and 20.4 cm,
the next decimal might be estimated or the closer of these values might be used as
the approximate length of the page. If the measurement is estimated as 20.31 or
2.031 × 10 in scientific notation, it is implied that the exact length falls between
2.0305 × 10 and 2.0315 × 10, so the absolute error would be at most .005. Notice
the difference between reporting the result as 20.31 versus reporting as 20.310; the
latter value implies an error of at most .0005. Scientist indicate the accuracy of
a measurement by giving the result in scientific notation with rules for identifying
the significance of the digits.

A digit is considered significant if it is meaningful in a measurement or is an
estimated digit in the measurement. For example, if the length of the page is
given as 2.031 × 10 cm, the digits 2, 0, 3 and 1 are all significant digits; the first
three were measured and the last was estimated. When interpreting the number of
significant digits in a measurement or when recording a measurement, the following
rules apply:

• The digits 1, 2, . . . 9 are always significant.
• Zeros between two other significant digits are significant.
• Zeros to the right of the decimal place and to the right of another signif-

icant digits are significant.
• Zeros used for spacing are not significant.

Thus, if a measurement is reported as .0020640 the measurement has five sig-
nificant digits. In scientific notation it would be written as 2.0640 × 10−3, with
all digits in this representation significant. To compute the absolute error we in-
terpret the terminal 0 as the result of rounding. Hence the exact value of the
quantity being measured is in the interval [.00206395, .00206405). The computa-
tion (.00206405−.00206395)

2 = 5e-8 tells us that the implied absolute error in this
measurement is 5× 10−8.

If we report the distance from the earth to the sun, as about 93 million miles
accurate to the nearest million miles, it should not be written as 93,000,000 because
that would imply an error of at most one-half mile! It should be given as 9.3× 107

Exercise 4.13. A web research project.
(i) Find the latest data on the maximum and minimum distances between

the earth and the sun.
(ii) What is the absolute error implied by these measurements?

(iii) What is the error in the 9.3 × 107 mile approximation? the absolute
error? the relative error? the absolute relative error?

(iv) Is 9.3× 107 the best single number estimate to the distance between the
earth and the sun? Specifically could you safely include another digit or
two? Explain.
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(v) Find the latest data on the maximum and minimum distances between
the earth and the moon.

(vi) What is the absolute error implied by these measurements?
(vii) What number would you report if you were asked for a single number

representing the distance between the earth and the moon.

5. Operations with Approximate Quantities

In this section we address the issue of the propagation of errors when we perform
arithmetic operations on approximate values rather than the corresponding exact
numbers. That is , if x and y are the exact quantities and x∗ and y∗ respective
approximations, how well does x∗+y∗ approximate x+y and how well does x∗×y∗
approximate x×y. Common sense tells us that we can not expect a sum or product
to be more accurate than the individual approximations.

First, suppose the numbers are approximations written in scientific notation
so the significant digits can be identified. The rule for addition and subtraction
of two such quantities, is to round to the least-accurate decimal digit, that is to
the final decimal digit of the least accurate of the two quantities. For example
1.653× 10−1 + 7.19× 10 would be added as follows:

0.1653
+76.9

77.0653
The least accurate of these two numbers is the 76.9, it is only accurate to

the nearest 10th while 0.1653 is accurate to the nearest 10 thousandth. So the
least-accurate digit is 9 and we report the answer to the nearest 10th. The sum is
rounded to 77.1.

We can explain this convention by keeping track of the errors. Now suppose
that the error bounds |x− x∗| ≤ εx and |y − y∗| ≤ εy are valid. Then,

|(x± y)− (x∗ ± y∗)| ≤ |x− x∗|+ |y − y∗| ≤ εx + εy

That is, the error in the sum is bounded by the sum of the error bounds. Similarly,
the error in the difference is bounded by the sum, not the difference, of the error
bounds. Applying this analysis to the above example, let x∗ = 0.1653 with an
error bound εx = 0.00005 and let y∗ = 76.9 with the error bound of εy = 0.05.
The small error in the approximation of the summand x∗ = 0.1653 is insignificant
when compared to the relatively large error in the approximation of the summand
y∗ = 76.9

The rule for multiplication and division is that the product should be rounded to
the least number of significant digits in each factor. Thus, the product of 2.812×10
and 1.7× 10−2 would be rounded to 4.8× 10−1.

Numbers that are exact, such as integers that are determined by counting rather
than measurements, are assumed to have infinitely many significant digits. Thus,
if a rod has length 2.82 meters, then the length of 4 such rods is 11.28 rods.

Since,

x× y − x∗ × y∗ = x× (y − y∗) + (x− x∗)× y − (x− x∗)× (y − y∗),
taking absolute values gives

|x× y − x∗ × y∗| ≤ |x| × |y − y∗|+ |x− x∗| × |y|+ |x− x∗| × |y − y∗|
≤ |x| × |y − y∗|+ |y| × |x− x∗|+ ε1 × ε2.
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Dividing by |x× y| and simplifying we obtain,

|x× y − x∗ × y∗|
|x× y|

≤ |y − y
∗|

|y|
+
|x− x∗|
|x|

+
ε1 × ε2
|x× y|

.

If the two error bounds are small relative to the exact values, which is typically
the case, then their product is essentially negligible. In that case we have a rule of
thumb that the relative error in the product is bounded by the sum of the relative
errors. It is worth noting that if one of the numbers is exact, then the relative error
in the product is the same as the relative error of the approximate factor.

Now, let’s return the test problem that was described at the beginning of this
chapter. If we interpret 7 as a measurement reported using significant digits, then
we conclude that the actual playing time is between 6.5 and 7.5, The number 3
is exact, so the time for playing 3 times is between 19.5 and 22.5. Of the choices
stated in the problem, 20 minutes is the only one in this range.

What can we say about the relative error in total playing time? Since we don’t
know the exact time for playing the piece once we can’t compute exactly the relative
error of the total playing time, but we can compute an upper bound for it. What
is the largest possible relative error for playing the piece once? That is, what is the
largest value the fraction

|Error|
|Exact Value|

could have? The fraction can be no larger then the largest possible value of |Error|
divided by the smallest possible value of |Exact Value|. We have already observed in
this case that the largest |Error| can be is 0.5 while the smallest that |Exact Value|
can be is 6.5. Therefore, the absolute relative error is at most 0.5

6.5 = 1
13 ∼ .077. In

reporting an error, one often uses percentages. So we might say that it takes about
7 minutes to play the piece and that our estimate is accurate to within 7.7%. Now,
since 3 is exact, the relative error in the approximation for the total playing time
is no more than 1

13 .
If the piece were longer, say about 20 minutes, the the absolute relative error

would be smaller. Of course we could easily compute a bound on the absolute rela-
tive error in this case too. We could do the same for a piece running approximately
36 minutes and so on. Again using the power of algebra, we can cover all cases in
just one computation! Suppose that the rounded time to play a piece is m minutes.
Then the absolute relative error is bounded by the fraction 0.5

m−0.5 = 1
2m−1 . In our

case m = 7, and we get the bound 1
13 ; for a 20 minute piece we get 1

39 or about
2.6%; a 50 minute piece has its absolute relative error bounded by 1

99 , about 1%,
and so on.

Now let’s consider another estimation problem. Suppose that you measure the
length ` and width w of a rectangular garden plot and round off each measurement
to the nearest foot. Using the rounded measurements, how far off could your
computation of the perimeter and area be?

Let’s look at the perimeter first and let’s take a specific example. Say that your
rounded measurements are 22 ft. long by 15 ft. wide. The estimated perimeter is
2 × (22 + 15) or 74 ft. The error in length could be as much as 6 inches and the
same for the width. So `+ w could be in error by as much as a foot. The number
2 is exact, so the error of perimeter is at most 2. Specifically, the dimensions could
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22
?

15-

21.5
R

22.5
	

14.5j

15.5*

be as small as 14.5 feet by 21.5 feet for a perimeter of 72 feet (see the inside red
rectangle in the next figure) and the dimensions could be as large as 15.5 feet by
22.5 feet for a perimeter of 76 feet (see the outside red rectangle in the figure). Of
course, the error in ` could partially cancel the error in w — if one measurement
was too large and the other too small. On the other hand. as we just pointed out,
the measurements could both be too large or both too small and then errors would
accumulate.

Now consider the area. One might guess that you could be off by as much as
a square foot. But, to understand exactly what could happen we must rely on an
analysis of the error terms. Let e denote the error in measuring length, that is the
actual length ` is given by ` = 22 + e. Let f denote the error in measuring width,
so w = 15 + f Then

`× w = 22× 15 + 22f + 15e+ e× f.

So the computed area, 22 × 15 = 330 sq. ft., will be off by 22f + 15e + e × f. As
we mentioned before the term e× f will be significantly smaller than either of the
other two terms and so we ignore it and concentrate on the remaining two terms. If
both measurements were short by 6 inches this error term is 18.5 square feet. The
inner rectangle has area 21.5 × 14.5 = 311.75 sq. ft. or 18.25 sq. ft. less than the
estimation of 330 sq. ft. The outer rectangle has area 22.5× 15.5 = 348.75 sq. ft.
or 18.75 sq. ft. more than the estimation of 330 sq. ft.

Exercise 4.14. Explain why these two extreme cases are off by different
amounts. Explain why they are both different from the 18.5 we computed.

6. Other Applications

A common situation in mathematics is that some number is theoretically known
to exist and decimal or general rational approximations to it are sought. A solution
of an equation is a case in point. If the number is known to be irrational, it is
natural to look for a rational approximation.

For example, we know that
√

2 is irrational. Let’s look for rational approxima-
tions to it. We know that 1 <

√
2 because for any number r ≤ 1 we have r2 ≤ 1.

Similarly,
√

2 < 2 because the square of any number r ≥ 2 is at least 4. Thus, we
could take 3

2 as a first approximation to
√

2. Since ( 3
2 )2 = 9

4 > 2, we conclude that√
2 ∈ [1, 3

2 ] and that the absolute error in the approximation of
√

2 by 3
2 is at most

1
4 . An ad hoc method of getting a more precise bound of the error is to observe
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that

|A2 −B2| = |A−B||A+B| giving |A− B| = |A
2 − B2|
|A + B|

.

With A =
√

2 and B = 3
2 , this can be rewritten as

|
√

2− 3
2
| = 2− 2.25√

2 + 1.5
≤ 0.25

2.5
= 0.1.

The right fraction was obtained by replacing
√

2 by 1 and observing that decreasing
the denominator increases the value of the fraction, hence the inequality.

Exercise 4.15. Carry out the above error analysis for the approximation 7
5 .

One of the most estimated numbers of all time is π, the ratio of the circum-
ference of a circle to its diameter. The Babylonians used 25

8 = 3.125. Archimedes
of Syracuse bounded π between 223

71 and 22
7 and then used the average of these

two numbers as an estimate for π. An early estimate from Asia (India or perhaps
China) is 355

113 . Your calculator has a built in estimate for π accurate to whatever
number of decimal places your calculator keeps.

Even though the number that your calculator holds for π is itself an estimate
assume it to be the correct value for π in working this next exercise.

Exercise 4.16. Calculate the error, the absolute error, the relative error and
the absolute relative error for each of the following approximations to π. Also state
the accuracy of the estimate in terms of the number of correct digits in its decimal
expansion.

(i)
25
8

;

(ii)
22
7

;

(iii)
223
71

;

(iv) the average of the previous two estimates;

(v)
355
113

.

Even though your calculator can hold in memory only so many digits of a
number, you can use the calculator to make computations accurate to as many
decimal places as you wish. The TI84 displays 10 digits and holds 14 in memory.
We will use only the 10 displayed digits. Suppose that we wish to add two 15 digit
numbers accurately. Say m = 987, 654, 321, 012, 345 and n = 864, 209, 753, 187, 654.
Let w = 987, 654 and x = 321, 012, 345, then m = w109 +x. Similarly n = y109 +z,
where y = 864, 209 and z = 753, 187, 654. Then m + n = (w + y)109 + (x + z).
Computing (x+ z) on the calculator gives 1, 074,199,999. Notice, we must carry a
1 into the 1010 column. So we calculate w+y+1 to get 1,851,864. and we conclude
that m+ n = 1, 851, 864, 074, 199, 999.

While the TI84 holds only 14 digits in memory, you can enter as large a number
as you wish. So you can enter 987, 654, 321, 012, 345 + 864, 209, 753, 187, 654. The
calculator will round the answer to 1,851,864,074,200,000. and display 1.851864074e15.
To check that indeed the last digit is 2, compute

987, 654, 321, 012, 345 + 864, 209, 753, 187, 654− 1.8× 1015
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to get 5.18640742e13. One last observation: had we split the digits of our two
large numbers into groups of 5 and 10 instead of 6 and 9, we would have lost
a digit because there would be a carry over: 4, 321, 012, 345 + 9, 753, 187, 654 =
14, 074, 199, 999 an 11 digit number. Hence the calculator will round and report
1.40742e13. In general, the sum of two k digit numbers will be a k or k + 1 digit
number; so, in parsing the numbers, one must take into account the possible sizes
of the intermediate answers.

Exercise 4.17. Compute all digits of the following sums:
(i) 987,654,321,987,654,321 + 776,655,443,322,110,099
(ii) 987,654,321,987,654,321,987 + 776,655,443,322,110,099,887

(iii) 987,654,321,987,654 + 321,987,776,655,443 + 322,110,099,887,766

The product of two 8 digit numbers will be a 15 or 16 digit number and hence
out of range of the TI84. Again, by splitting the numbers we may compute all digits
of the answer. Let m = 87, 654, 321 and n = 53, 187, 654. Write m = 8765× 104 +
4321 and n = 5318× 104 + 7654 or symbolically m = w104 + x and n = y104 + z,
Then mn = (w104 + x)(y104 + z) = wy108 + (wz + xy)104 + xz. Computing the
products we have wy = 46612270, wz + xy = 90066388 and xz = 33072934. Now
we must add:

4,661,227,000,000,000
900,663,880,000

33,072,934
We will have to break this addition up into pieces. Start by adding the last 9

digits to get 663, 880, 000 + 33, 072, 934 = 696, 952, 934 and then the first 7 digits
to get 4, 661, 227 + 900 = 4, 662, 127. So our or product is 4,662,127,696,952,934.

Exercise 4.18. Compute all digits of the following products:
(i) 987, 654, 321× 123, 456, 789
(ii) 987, 654, 321, 987× 776, 655, 443, 322





CHAPTER 5

Discovering Formulas

In this section we indicate how several interesting formulas can be discovered.
We suppose that we have a large supply, as many as needed, of square tiles. We
describe several ways of laying them out in patterns. These patterns are developed
in steps and at the end of each step the total number of tiles in the pattern is
counted. The goal is to determine the number of tiles used after a fixed number of
steps and to express that number as a formula in n, the number of steps.

1. Formulas from areas of tile patterns

Consider the following sequence of tile patterns.

• Step 1: Place one tile:

• Step 2, Place three tiles around the right side and the bottom of the first
tile:

• Step 3, Place 5 tiles to the right side and the bottom of previously placed
tiles:

...
• Step n: Place 2n−1 tiles to the right side and the bottom of the previously

placed tiles.

63
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The table below shows the count and formula for the total number of tiles used
after completing the steps listed.

Step 1 Step 2 Step 3 · · · Step n
Tiles 1 1 + 3 = 4 1 + 3 + 5 = 9 · · · 1 + 3 + · · · (2n− 1) = n2

We can use the same idea to compute the formula for the sum of consecutive even
numbers.

• Step 1, Place two tiles in a horizontal row:

• Step 2, Place one tile on the right side of the two tiles and then place
three tiles on the bottom of the previously placed tiles:

• Step 3, Similarly, place 6 tiles to the right and bottom of the previously
placed tiles:

Exercise 5.1. Consider the above sequence of steps.
(i) Carryout the next two steps.
(ii) Make a table listing the step number and the total number of tiles placed

after that step.
(iii) Find the formula for the number of tiles placed after the nthe step.
(iv) Modify the formula you found to obtain a formula for the sum of the first

n consecutive integers.



2. FORMULAS FROM AREAS OF TILE PATTERNS 65

Here is another formula from a tile pattern.

• Step 1, Place one tile:

• Step 2, Place 5 tiles to the right side, the left side and the bottom of the
previously placed tiles:

• Step 3, Similarly, place 9 tiles to the right and bottom of the previously
placed tiles:

Exercise 5.2. Consider the above sequence of steps.

(i) Carryout the next two steps.
(ii) Show that at each stage you are adding a number of the form 4n + 1 -

starting with n = 0.
(iii) Make a table listing the step number and the total number of tiles placed

after that step.
(iv) Find the formula for the number of tiles placed after the nthe step.

Exercise 5.3. For another formula-by-pattern, start by placing 2 tiles hori-
zontally. In step 2, place 6 tiles on the right side, the left side and the bottom of
the previously placed tiles. Continue the pattern for several steps. Make the table
and find the formula for the total number of tiles.

For still another formula-by-pattern, start by placing a single tile in step 1 and
then in subsequent steps surround the previously placed tiles on all sides. Continue
the pattern for several steps. Make the table and find the formula for the total
number of tiles.

2. Formulas from areas of tile patterns

Now we look at a 3-dimensional extension of tile patterns. Instead of tiles we
will be producing patterns of cubes.

• Step 1, Place a cube in space:
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• Step 2, Place a cube on each of two visible vertical faces, place another
cube adjacent to these two, and place four cubes on the bottom to form
a 2× 2× 2 cube.

• Step 3, Place four cubes on each of the two visible vertical faces, two
cubes between them, and nine cubes on the bottom to obtain a 3× 3× 3
cube:

• Step n, Place (n− 1)2 cubes on each of two visible vertical faces, (n− 1)
cubes between them, and n2 on the bottom to obtain an n×n×n cube.
That is, we add

2(n− 1)2 + (n− 1) + n2 = 3n2 − 3n+ 1

cubes in step n. This means
n∑
k=1

(3k2 − 3k + 1) = n3

• Use the previously obtained formula for the sum of consecutive integers
to show that

n∑
k=1

k2 =
2n3 + 3n2 + n

6

Consider the steps outlined above that resulted in an n × n × n cube after n
steps. Suppose that the individual cubes are held together to form a solid cube
which is painted on all sides. Now we want a count, after each step, of the number
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of individual cubes that are painted on 0, 1, 2, . . . 5,or 6 sides. We make a table
as before and include the total number of cubes counted and the total area which
serves as a check on our calculations.

Step 0 1 2 3 4 5 6 No. Cubes Area
1 1 1 6
2 8 8 24
3 1 6 12 8 27 54
4 8 24 24 8 64 96
n (n− 2)3 6(n− 2)2 12(n− 2) 8 n3 6n2

Notice that at step n the check is that the total number of sides painted equals
the surface area of the cube. That is, 0∗(n−2)2+1∗6(n−2)2+2∗12(n−2)+3∗8 = 6n2

Next we consider a three dimensional analogue of the last tile pattern.

• Step 1, we place one cube.

• Step 2, place a 9-cube square underneath the cube placed in Step 1 and
with that cube in the center.

• Step 3, place a 25-cube square underneath the previously placed cubes
with them in the center.

• Again, after each step, we want a count of the number of individual cubes
that are painted on 0, 1, 2, . . . 5, or 6 sides. We make a table as before
and include the total number of cubes counted and the total area.
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Step 1 Step 2 Step 3 · · · Step n

0 Sides Painted 1 (n−2)(2n−3)(2n−5)
3

1 Side Painted 1 9 (2n− 3)2

2 Sides Painted 4 4(n− 2)2

3 Sides Painted 4 16 12n− 20
4 Sides Painted 4 4 4
5 Sides Painted 1 1 1
6 Sides Painted 1
Total Cubes 1 10 27 4n3−n

3
Surface Area 6 34 86 12n2 − 8n+ 2

Finally, another three dimensional analogue of one of the tile patterns.

• Step 1, we place one cube:

• Step 2, place a 4-cube square underneath the cube placed in Step 1 and
with that cube in a corner:

• Step 3, place a 9-cube square underneath the previously placed cubes at
the same corner;

• Continue in this way.
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Step 1 Step 2 Step 3 · · · Step n

0 Sides Painted 2n3−15n2+37n−30
6

1 Side Painted 1 2n2 − 9n+ 10
2 Sides Painted 3 n2 − 2n
3 Sides Painted 1 6 5n− 9
4 Sides Painted 3 3 3
5 Sides Painted 1 1 1
6 Sides Painted 1
Total Cubes 1 5 14 2n3+3n2+n

6
Surface Area 6 20 42 4n2 + 2n

3. The Area of a Region with Curved Boundary

In this section we show how the formulas we found can be used to determine the
area of the region that lies between the parabola y = x2 and x-axis for 0 ≤ x ≤ 1.
The basic idea for approximating such areas goes back more than 2,000 years to
Archimedes of Syracuse! This is how he analyzed the problem. Divide the interval
[0,1] into n subintervals of equal length, i.e. of length 1

n . On the ithe subinterval,
construct a rectangle with base on the x-axis, and of width 1

n and height
(
i
n

)2
.

(See the figure.) The area of this rectangle is i2

n3 .

Figure 5.1. Outer Rectangular Approximation

Clearly the area under the parabola, call it A, is less than the sum of the areas
of these n rectangles. That is, the quantity

n∑
i=1

i2

n3
=

1
n3

2n3 + 3n2 + n

6
=

1
3

+
1

2n
+

1
6n2

is greater than A.
Now construct on the ithe subinterval another rectangle of height i−1

n . The

area of this rectangle is (i−1)2

n3 and the sum of the smaller rectangles is less than A.
So, the quantity

n∑
i=1

(i− 1)2

n3
=

1
n3

2(n− 1)3 + 3(n− 1)2 + (n− 1)
6

=
1
3
− 1

2n
+

1
6n2
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Figure 5.2. Inner Rectangular Approximation

is less than A. Now these results hold for any integer n. When n is very large, both
of rectangular areas are near 1

3 and the larger n becomes the closer these areas are
to 1

3 . So we conclude that A = 1
3 .

4. The Trapezoid Rule

The method described above for finding the area bounded by the parabola
and the x-axis gives the area as the limiting value of approximating areas. In
many applications, it is not possible to obtain an exact value and approximations
must be used. Schemes for finding good approximations are often complicated and
computers are used to obtain them. Here we describe a variation of the method of
Archimedes for calculating the area of a region with a curved boundary.

We suppose the region is bounded by the x-axis and the curve y = f(x) for
a ≤ x ≤ b. As before, we divide the interval [a, b] into n subintervals each with
length h. Denote the endpoints of the subintervals by xi for i = 0 . . . n, so xi =
a + i ∗ h and x0 = a, xn = b. Now on each subinterval,the trapezoid with vertices
(xi, 0), (xi, f(xi)), (xi+1, f(i+1)) and (xi+1, 0), see the figure, has area that is
approximately equal to the area between the curve and the x-axis from xi to xi+1.

Thus the total area between the curve and the x-axis from a to b is approxi-
mately equal to the sum of the area of the trapezoidal areas. That is, the quantity

n∑
i=1

(f(xi−1) + f(xi))
h

2
=
b− a
2n

(
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

)
is approximately equal to the area between the curve and the x-axis from a to b.

It is easy to write an algorithm for calculating the trapezoidal approximation
to the area that could be programmed on a computer. Here is the statement of the
algorithm:

Algorithm(Trapezoid Rule)
• Input: The left endpoint a, the right endpoint b, the number of subinter-

vals n, and the function y = f(x).
• area = (f(a) + f(b))/2
• For i=1 to n− 1

area = area + f(a+ i b−an )
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Figure 5.3. Trapezoidal Approximation

• area =
(
b−a
n

)
area

Let’s write a program for the TI-89 does the calculations in this algorithm. The
program can be used for any function which is entered as y1(x). The computed
result will be an approximation to the area under the curve and above the interval
on x-axis from the left endpoint a to the right endpoint b. When calling the
program we will list the left and right endpoints of the interval, and the number of
subintervals to be used in the approximation.

: trap(a,b,c)
: (y1(a)+y1(b))/2.→area
: (b-a)/n→h
: For i,1,n-1,1
: y1(a+i*h)+area→area
: EndFor
: area*h→area
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: Disp area
: EndPrgm

Several things about this code should be mentioned. First, entering “2.”rather
than simply “2”was intentional. Because if “2”is entered the TI-89 might do all
calculations with exact arithmetic. This can result in an area approximation in the
form of a fraction with a very large numerator and denominator. The calculations
will be lengthy and time consuming, and usually one is more interested in a decimal
form for the approximation. Second, to avoid computing b−a

n every time it appears
in the algorithm, it is computed once and stored in h.

It’s interesting to compare the trapezoidal approximation to the area under the
parabola y = x2 with the inner and out rectangle approximations. Suppose we take
n = 20 in both cases. The Trapezoid Rule program gives the approximate area as
.33375. The formulas above give an outer rectangle approximation of .35875 and an
inner rectangle approximation of .30875. Thus, at least in this case, the trapezoidal
approximation is more accurate. For smooth boundaries, this is generally the case.
Notice also that in this case the approximation given by the Trapezoid Rule is
exactly the average of the outer and inner rectangle approximations. Will this
always be the case?

Nonetheless, in one respect, the method of Archimedes for the area under a
parabola has an advantage over the trapezoidal approximation. That is, there
were two rectangular approximations, one that was larger than the area under
the parabola and one that was smaller. One could thus infer the accuracy of
the approximation. That nice situation continues to hold whenever the rectangle
method is used with an increasing function. For the trapezoidal approximation,
we see from the figure that on some subintervals the approximations are larger
than the actual area and on some they are smaller. Thus, we have no such simple
way of assessing the accuracy of the trapezoidal approximation. Indeed, one might
wonder if it could happen that when adding all the areas over the subintervals the
errors accumulate in a way that gives a very poor approximation or that as the
number of subintervals increases the approximations do not improve. Although it
is beyond the scope of this workshop, it can be shown that for continuous functions
y = f(x) the trapezoidal approximations do approach the true value of the area as
the number of subintervals increase.



CHAPTER 6

Problem Solving with Algebra

1. Area Problems

Consider the following geometric figure constructed from two overlapping rect-
angles. We would like to compute its area and perimeter. Our first task would be
to measure its sides. We have written in its measurements for you.

10

12

5

7

8

4

7

15

With these measurements, it is easy to compute the perimeter,

15 + 7 + 4 + 8 + 7 + 5 + 12 + 10 = 68;

but, computing the are is not so easy. One way to do this is to cut the region up
into rectangles that do no overlap. There several ways to do this; we picture one
below:

10

12

5

7

8

4

7

15

The area then is A = 10× 15 + 5× 7 + 3× 4 = 197.
Now consider another overlapping rectangle region with a different set of mea-

surements:

9

9

6

12

11

7

7

13
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If we try to draw this figure on a grid, we see that it does not close up! What’s
wrong?

We can use our algebra to better understand this figure. First, we replace all
lengths by variables:

a

b

c

d

e

f

g

h

The first question we ask is: How wide is this region from east to west? Measuring
along the top or north sides we have f + h for the width ; but measuring along the
south sides, we get b + d. So one condition that must be met for the boundary to
close is b+ d = f +h. Measuring the region from north to south, we get e+ g from
the east and a+ c from the west giving the second equation a+ c = e+ g.

Hence, if we are given any three of east-west measurements (b, d, f, h), then
we can compute the fourth. And, if we are given any three of north-south mea-
surements (a, c, e, g), then we can compute the fourth. If we delete the two 7 unit
measurements in the above example, we compute the correct east-west measurement
to be 8 = 9+12−13 and the correct north-south measurement to be 4 = 9+6−11,
Using these measurements, the drawing on the grid closes.

2. More Formulas

Consider an equilateral triangle with side length s:

�
�
�
�
�
�
�
�
��

T
T
T
T
T
T
T
T
TT

s h

s
2

P = 3s
A = sh

2

Here we have four variables: s, side length; h height; P , perimeter and A area.
They are not independent. In fact, you can fix any one of them and then the
other three are determined. Our first task is to compute h in terms of s. By the
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Pythagorean Theorem s2 = ( s2 )2 + h2. Multiplying through by 4, collecting terms,
dividing through by 4 and taking the square root of both sides:

( s2 )2 + h2 = s2

s2 + 4h2 = 4s2

4h2 = 3s2

h2 = 3
4s

2

h =
√

3
2 s

Using this equation we can solve for the area in terms of the side length:

A =
sh

2
=

1
2
s

√
3

2
s =
√

3
4
s2.

Since s = P
3 , we then have:

A =
√

3
36
P 2.

Exercise 6.1. Find the side length of the equilateral triangle that has the
number of units in its perimeter equal to the number of square units in its area.

[[Work out formulas for isosceles triangle with base b, height h, side length s,
area A and perimeter P .]]

[[Work out formulas for symmetric trapezoid with base b, height h, top length
t, area A and perimeter P .]]





CHAPTER 7

Covering and Surrounding

This chapter was designed as a stand-alone workshop, and can be used as such
or as a chapter of the text.

1. Relationships in the Bumper Car Problem

Investigation 1 in Covering and Surrounding deals with designing bumper car
layouts. Some of the problems deal with finding the maximum perimeter given a
certain number of blocks. The book mentions that the largest perimeter you can
get is by putting the blocks in a straight line, but it is not intuitively clear why this
solution is the best.

For example, if you want to find a design with maximum perimeter on 4 blocks,
lining up the blocks in a straight line gives you a perimeter of 10, as in Figure 7.1:

(A)

Figure 7.1.

You can get 10 by counting the top and bottom edge of each block and then
adding 2 for the edges on the left and right. Thus, if you line up N blocks in a line,
the perimeter P can be found by P = 2N + 2.

. . .
1

2

3

4

5

6

2N − 1

2N

2N + 1 2N + 2 (B)

Figure 7.2.

The previous example of perimeter 10 on 4 blocks is not the only possible design.
The 2 designs on 4 blocks shown in Figure 7.3 also have 10 as the perimeter:

(C) (D)

Figure 7.3.

Is there a formula to figure out the perimeter based on how the blocks are lined
up? Yes! Before we see what the formula is, let’s look at one more thing. We’ll call
a point in our design an internal point if 4 blocks meets at that point. For example,
in the design in Figure 7.4 there is exactly 1 internal point, while designs (A), (B),
(C) and (D) have no interior points.

77
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rInterior Point PPPq

Figure 7.4.

A relationship between the number of blocks, N , the perimeter P and the
number of internal blocks I is given by P = 2N+2−2I. (This formula was derived
from a theorem by Euler often used in graph theory.) From this formula, it is
evident that P takes on its maximum value when I = 0. Thus, any way you can
arrange N blocks without any interior points will give you a maximum perimeter.
The simplest way to create such a design is line up all the blocks in a straight line!

2. Constructing Grid Regions

2.1. Basic Principle: All shapes can be constructed from one square by
adding squares one at a time and this can be done in three ways, shown in Fig-
ure 7.5, Figure 7.6, and Figure 7.7.

� � �

� � �

or or

Figure 7.5. Add a square touching along one edge: area increases
by 1; perimeter increases by 2.

�

� �

� � ��

or or

Figure 7.6. Add a square in an inside corner: area increases by
1; perimeter stays the same.

� � �

� � ��

or or

Figure 7.7. Add a square in a slot: area increases by 1; perimeter
decreases by 2.
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2.2. What can we conclude from this?
• Perimeter is always an even number.
• A region with perimeter is as large as possible for a given area if you never fill

an inside corner or slot when constructing it. Then P = 2A+ 2.
• A region with area as large as possible for a given perimeter has no inside corners.
• Area that is as large as possible for a given perimeter is a rectangle.
• Area that is as large as possible for a given perimeter is square or a rectangle

with one side just one unit longer than the other. Then A = P 2

16 or A =(
P+2

4

) (
P−2

4

)
= P 2

16 −
1
4

• We can always avoid filling a slot in constructing a region.
• P = 2(A+ 1− I), where I is the number of interior points.

3. How many pentominos are there?

Investigation 3 in Covering and Surrounding describes a pentomino. A pen-
tomino is an arrangement of five unit squares that are joined along their edges. Up
to isomorphism (turning or flipping), there are only 12 pentominos. Let’s investi-
gate why.
First, notice that with one square there is only one design, as shown in Figure 7.8.

(I) 4 2

1

3

Figure 7.8.

Now, adding a square to 1, 2, 3, or 4 would all be equivalent, so there is only
one design with 2 squares, shown in Figure 7.9.

(II)
1 2

3

45

6

Figure 7.9.

Notice that in design (II), adding a block to 3 is the same as adding a block to
6. Also, adding a block to 1 is equivalent to adding a block to 2, 4, or 5. So there
are exactly 2 designs with three blocks, shown in Figure 7.10.

(III)
1 2 3

4

567

8 (IV)

1 2

3

4
5

6

7

8

Figure 7.10.

To find all designs with 4 blocks (tetrominos), we add a block to each of the
edges 1-8 in (III) and (IV) and throw out duplicates. In design (III) adding a block
to 1, 3, 5, or 7 all yield the same design. Two other designs can be formed by
adding a block to 4 or 8 and 2 or 6, and all three are shown in Figure 7.11.

You can still get other tetrominos by adding blocks to design (IV). However,
some of these will be repeat designs. For instance, adding a block to 1 or 8 in design
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(V)
1 2 3 4

5

6789

10 (VI)

1 2 3

4

5
6

7
8

9

10
(VII)

1 2 3

4

56
7

8

9

10

Figure 7.11.

(IV) gives us design (VI), while adding a block to 3 or 6 results in design (VII).
Two new tetrominos can be obtained to by adding blocks to 2 or 7, and 4-5, shown
in Figure 7.12.

(VIII)

1 2

3

4
5

67

8

9
10

(IX)

1 2

3

4

56

7

8

Figure 7.12.

Now, all possible tetrominos are depicted in designs (V)-(IX). To find the total
number of pentominos, we can add a block to each edge in designs (V)-(IX) and
get rid of any duplicates.

The 12 possible pentominos are shown in Figure 7.13.

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

Figure 7.13. The 12 Pentominos

Each of these pentominos was created by adding a block to one of the tetromi-
nos:
• Adding a block to edges 5 or 10 of (V) results in pentomino A.
• Adding a block to edges 1, 4, 6, or 9 of (V) or 4 of (VII) results in pentomino B.
• Adding a block to edges 2, 3, 7, or 8 of (V) or 4 or 10 of (VI) or 10 of (VII)

results in pentomino C.
• Adding a block to edges 5-6 or 8-9 of (VI) or 6-7 of (VII) or 4-5 or 9-10 of (VIII)

or any edge of (IX) results in pentomino D.
• Adding a block to edge 5 of (VII) results in pentomino E.
• Adding a block to edges 9 of (VII) or 3 or 8 of (VIII) results in pentomino F.
• Adding a block to edge 8 of (VII) results in pentomino G.
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• Adding a block to edge 3 of (VII) results in pentomino H.
• Adding a block to edges 2 of (VII) or 1 or 3 of (V) or 1 or 6 of (VIII) results in

pentomino I.
• Adding a block to edge 2 of (VI) results in pentomino J.
• Adding a block to edges 2 or 7 of (VIII) results in pentomino K.
• Adding a block to edges 7 of (VI) or 1 of (VII) results in pentomino L.

This systematic approach shows that there are exactly 12 different pentominos!

4. Challenging Exercises

Exercise 7.1. Consider the two Regions depicted in Figure 7.14.

R1 R2

R1: area=60 perimeter=34

R2: area=16 perimeter=18

Figure 7.14.

• Without recounting, compute the area of the region obtained by abutting these
regions as shown in Figure 7.15

Figure 7.15.

• Without recounting, compute the area of the region obtained by overlapping the
regions as in Figure 7.16

• Without recounting, compute the area of the region obtained by removing a
copy of the smaller region from the larger region, as shown in Figure 7.17.

Exercise 7.2. Consider any two regions (not necessarily grid regions) R1 and
R2 with areas A1, A2 and perimeter P1, P2.
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Figure 7.16.

Figure 7.17.

• Give formulas for the area and perimeter of the region formed by abutting R1

and R2 along a boundary of length N .
• Give formulas for the area and perimeter of the region formed by overlapping
R1 and R2 (R1 ∪R2), when the region common to both (R1 ∩R2) has area A0

and perimeter P0.
• Give formulas for the area and perimeter of the region formed by removing the

region R2 from the interior of R1.

Exercise 7.3. Consider any grid region R. Its boundary has inside corners
and outside corners, as shown in Figure 7.18.

Let IC denote the number of inside corners and OC denote the number of
outside corners. Give an equation relating IC and OC Check your equation on
several different regions. Try to formulate an explanation for this equation.

Exercise 7.4. A grid region R can have several kinds of symmetries: mirror
symmetries, half-turn symmetries, and quarter-turn symmetries.

• List all symmetries for each of the regions in Figure 7.19.
• Construct regions that exhibit each possible kind of symmetry. And then con-

struct regions that exhibit each possible collection of symmetries.
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inside corner
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HHY

inside corner
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��	
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@@I

outside corners

Figure 7.18.

Figure 7.19.

5. Can We Estimate Perimeter Using a Grid?

Investigation 2 in Covering and Surrounding deals with measuring odd shapes.
A teacher’s note (p. 28b) describes how using smaller grids can help students better
estimate the area. One might conclude that estimating perimeter can be done in
the same way. Let’s investigate this thought. Consider the right triangle shown in
Figure 7.20 that has legs of size 1 unit:

@
@
@
@
@
@
@@

1

1

√
2

Figure 7.20.

The perimeter of this triangle is 2 +
√

2 ≈ 3.414 units. If we estimate the
perimeter with blocks of size 1

4 we have P ≈ 3( 1
4 ) + 3( 1

4 ) + 6( 1
4 ) = 3. A graphical

representation of this is shown below, in Figure 7.21:
Now, if we try to estimate the perimeter of the triangle with blocks of size 1

8

we have P ≈ 7( 1
8 ) + 7( 1

8 ) + 14( 1
8 ) = 28

8 = 3.5, as shown in Figure 7.22.
So when we use blocks of size 1

8 we get really close to the actual perimeter.
But notice that our answer is slightly larger than the perimeter. If we were to use
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Figure 7.21.

@
@
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@@

Figure 7.22.

blocks of size 1
n , our estimated perimeter would be:

P ≈ n− 1
n

+
n− 1
n

+ 2
(
n− 1
n

)
=

4n− 4
n

= 4− 4
n
.

So as we pick larger and larger n (thus using smaller and smaller blocks) the
perimeter we get will be close to 4 which is not the actual perimeter at all! There-
fore, estimating perimeter using a grid can lead to false conclusions.

6. The “Toothpick Formula.”

One investigation in Covering and Surrounding deals with counting the number
of edges in a grid region or the number of toothpicks needed to construct the region.
Specifically it considered the sequence of grid regions shown in Figure 7.23:

Figure 7.23.

The numbers of toothpicks needed to construct these are 4,10,16 and 22. The
student is to observe that the number is increased by 6 at each step.

The general formula for the number of toothpicks is quite simple:

T = 2A+
1
2
P,

where T is the number of toothpicks, A, the area and P , the perimeter. Further-
more, it is very easy to explain this formula.

We will derive the formula by counting each toothpick twice (once from each
side) and then divide the total by 2. Standing inside a square, we count 4 toothpicks
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in its boundary. So 4A counts each toothpick in the interior twice, once from each
side, and each toothpick on the perimeter once, from the inside. So 4A+P counts
each toothpick exactly twice and dividing by 2 gives the formula.

We can combine this formula with the formula for perimeter to get a second
toothpick formula in terms of area and the number of interior points:

T = 3A+ 1− I.
To combine T = 2A + 1

2P and P = 2A + 2 − 2I, divide the second equation by 2
to get

1
2
P = A+ 1− I

then replace 1
2P by A+ 1− I in the first formula to get

T = 2A+A+ 1− I = 3A+ 1− I.

Covering and Surrounding was originally written by Jack Graver, Lawrence Lardy, and Christina Niemerg, as a

BAMA Workshop in March 2005





CHAPTER 8

Looking Down the Line

1. Basic Examples

Algebraically, a linear function is one which reduces to the form f(x) = ax+ b
where a and b are real constants. Preferably, we consider the case where a 6= 0,
as f(x) = b is constant and therefore mostly uninteresting. We work with linear
functions quite frequently, though most often we don’t stop to consider that they
in fact are linear.

Let’s consider a simple, common linear function: the total cost of a monthly
phone bill. For the sake of simplicity, we’ll ignore the taxes and fees applied to
the bill, and simply look at the basic costs. The simplest cell phone plans are the
prepaid plans; on these plans, you purchase in advance a certain number of minutes
of usage. Let’s say that a particular plan allows you to purchase minutes at a rate
of $20 per 100 minutes. What is cost of the plan?

Since the minutes must be purchased in allotments of 100, we’ll say that h is the
number of 100-minute blocks we’ve purchased, and C(h) is the cost. Then we have
C(h) = 20h. Simple enough. Even easier, though, if the company simply billed us
for each actual minute of use at the same rate. So let’s say we pay 20/100 = $0.20
per minute of use, m. What is our cost? Well, again, we have C(m) = 0.20m.
These are very trivial examples.

In the case of a wired phone line, there is often a minimum access fee and then
an additional per-call fee for local calls; let’s ignore long-distance calling. Say that
the line fee is $30 and the per-call cost is $0.10. Then if x is the number of calls
made in a month, the monthly bill should be C(x) = 30 + 0.1x. All of these are
clearly examples of linear functions.

We can use linear functions for other purposes than calculating the pre-tax
cost of our phone bills. In fact, any application where we know that a quantity is
changing from some initial amount by a fixed rate, we have a linear function.

Example 1. We have a 7000 gallon swimming pool in the back yard, and as
it is summer, are filling it with our garden hose. If the garden hose can flow at a
rate of 8 gallons per minute, how long will it take to fill the pool?

Well, if g(t) is the number of gallons of water in the pool after t minutes, we
have g(t) = 8t, so we simply solve 7000 = 8t for t = 875 to see that it will take 875
minutes to fill the pool.

If we want to convert that to hours, we have to use another linear function!
Given m minutes, the number of hours they equal is h = m/60, or to match the
earlier format, h = 1

60m. So we have that it will take 14 7
12 hours to fill the pool.

Exercise 8.1. Let’s say we’re filling the same pool, but we don’t know that
the pool is leaking at a rate of 10 gallons per hour! How long will it take to fill the
pool?

87
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1.1. Profit and Loss. A good class of applications of linear functions can be
found in business in terms of linear cost and revenue functions. The fixed cost for
a business is the cost which they pay no matter what; for instance, the monthly
rent on the building. The variable cost is often the per-unit cost of production.

Example 2. Lou’s Sprocket Company is a small manufacturer of gear assem-
blies. Their machine shop has a base operating cost of $20000 per month, and the
production cost per assembly is $15. So the cost function then is C(q) = 20000+15q,
where q is the quantity of assemblies produced.

Revenue functions work similarly; there is most often some fixed price at which
a company sells their product. Profit, then is the total revenue less the total cost.

Example 3. Lou’s Sprocket Company sells their gear assemblies for $40 each.
So their profit function is P (q) = 40q − (20000 + 15q) = 25q − 20000. Thus the
company has to sell at least 800 units to have non-negative profit.

1.2. Intersections. Any two lines which are not parallel must have a unique
point of intersection; this is the Parallel Postulate, a fundamental axiom of Eu-
clidean geometry. So, given two linear functions f(x) = ax + b and g(x) = cx + d
with a 6= c, we can find the unique point of intersection by finding the x such that
f(x) = g(x). Assuming then that ax + b = cx + d, we immediately can determine
that x = (d− b)/(a− c) when a 6= c.

Often this is a good way to determine the more cost-effective of alternatives.

Example 4. We are considering buying a house versus renting an apartment,
and want to decide how long we must own the home for it to be more cost-effective
than continuing to rent. We assume that the house costs $50000 to purchase and
maintenance will amount to $50 per month on average. On the other hand, to rent
an apartment will cost $750 per month. How long must we live in the house for it
to become more cost effective to own the home?

The cost of owning a home for t months can be written H(t) = 50000 + 50t; on
the other hand, renting for t months costs R(t) = 850t. So we set H(t) = R(t) and
solve for t: 50000 + 50t = 850t gives us 800t = 50000, or t = 62.5. So we must live
in the house for just over 5 years for it to be more cost-effective.

2. Geometry of the Linear Function

Consider the function f(x) = 4
5x+ 1. Thinking of it as a transformation of the

real line, we may describe it with the following 1-dimensional picture:
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Shifting to the right along the number line, we have:
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The second viewpoint gives a much more intuitive sense of what is happening
geometrically: f is a contraction by a factor of 4

5 about the number 5 (the center
of the contraction). This leads us to the following two questions:
• Does every linear function f(x) = ax+ b have a center or fixed point?
• Does every linear function have such a nice geometric description?

Addressing the first question, we must ask what it means for f to have a
fixed point. A fixed point of a function f is a value x0 where f(x0) = x0. So, if
f(x) = ax+ b, we have

x0 = f(x0)
⇐⇒ x0 = ax0 + b

⇐⇒ (1− a)x0 = b.

From these we conclude:

Lemma 1. Let f(x) = ax+ b.
(i) If a = 1 and b = 0, then f is the identity function, and every point is

fixed!
(ii) If a = 1 and b 6= 0, then f has no fixed points.

(iii) If a 6= 1, then b
1−a is the unique fixed point of f .

It is natural then to call f(x) = x + b a translation; we write t[b] = x + b. If
f(x) = ax+b is not a translation, then it has a center c = b

1−a , and may be written
in slope-center form:

f(x) = ax+ (1− a)c.

We write s[a,c] = ax+ (1− a)c. If a > 0 and a 6= 1, we call s[a,c] the dilation with
magnification a and center c. It is natural to call s[−1,c] = −x+ 2c a reflection.

Now, what if a < 0 and a 6= −1? Then we have

s[a,c] = s[−1,c] ◦ s[|a|,c] = s[|a|,c] ◦ s[−1,c].

3. Iterating Linear Functions

3.1. Savings and Loans. A particular application of the linear function is
that of determining the balance of an interest-bearing account. We will look at a
very simple example.

Example 5. Suppose we open a savings account at 4.5% interest with an
initial deposit of $1000, and thereafter deposit $250 per month directly out of our
paycheck. Since banks compound interest on a monthly basis, we find that our
monthly interest rate will be .045

12 = 0.00375, or 0.0375%.
Then we can determine the amount in our account after we’ve made our first

deposit of $250:
(1 + 0.00375)1000 + 250 = $1253.75.

Careful observation of the above equation gives us the formula

b(x) = (1 + i)x+ d,

where b is the balance of the account at the end of the next month if interest is i,
the start-of-month balance is x, and the monthly deposit is d.
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Unfortunately, this example only allows us to look one month ahead. What if
we know that our interest rate is fixed, and we’ve set up a direct deposit from our
paycheck in a fixed amount every month – can we derive a formula for the amount
in account in the nth month? Our formula b(x) = (1 + i)x+ d is a linear function,
so we are essentially asking the question, “What happens when we iterate a linear
function?”

This problem is of sufficient general interest to have generated its own ter-
minology. An iterated linear equation is of the form xn = axn−1 + b, called a
linear difference equation, and the resulting sequence of numbers x0, x1, . . . , xn, . . .
is called the solution to that linear difference equation with initial value x0. What
we would really like, though, is a closed-form solution for xn.

First, though, we look back at the geometric idea of the linear function, and
we’ll assume that a /∈ {−1, 0, 1}; this allows us to consider the center of the linear
difference equation, c = b

1−a , and write the following:

xn = axn−1 + b

= axn−1 + (1− a)
b

1− a
= axn−1 + (1− a)c

= a(xn−1 − c) + c

So then we can actually write xn−c = a(xn−1−c). But then the right-hand side of
the equation is remarkably similar to the left-hand side, and we can write instead
xn − c = an(x0 − c), or equivalently xn = an(x0 − c) + c. So since we started
with a and b in our equation instead of c, let’s write our equation in terms of those
parameters:

xn = an(x0 − c) + c

= an
(
x0 −

b

1− a

)
+

b

1− a

= anx0 −
anb

1− a
+

b

1− a

= anx0 +
(1− an)b

1− a
.

Let’s formalize this result.

Theorem 2. Let a, b be real numbers with a /∈ {−1, 0, 1}, and let xn = axn−1+b
be a linear difference equation. Then

xn = anx0 +
(1− an)b

1− a
.

So now we can go back to our example and go a little further.

Example 6. (Continued) Remember, we have opened a savings account with
an annual interest rate of 4.5% and an initial deposit of $1000, and have set up our
direct deposit to automatically put $250 into the account every month. So we have

xn =
(

1 +
0.045

12

)
xn−1 + 250 = 1.00375xn−1 + 250,
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for every integer n ≥ 1, with x0 = 1000. Using our theorem, we can write this as

xn = 1000(1.00375)n +
250(1− 1.00375n)
−0.00375

So if we know that our account will be set up in the same way for the next
three years, we can determine the balance of the account at that time: three years
is 36 months, so we have

x36 = 1000(1.00375)36 + 250
(

1− 1.0037536

−.00375

)
≈ 10760.77,

So after three years, we will have almost $10,800!

This application is relevant to almost everyone; what if, though, we want to
specify an amount to have saved in a certain amount of time?

Example 7. Let’s say that five years in the future, we want to have $40,000,
and our account again pays 4.5%. Again, we open the account with a deposit of
$1000. How much do we need to deposit per month in order to reach our goal?

Five years is 60 months; so we know that we want x60 ≥ 40000. We also know
that x0 = 1000, and a = 1.00375. So all that we need to know is b. Solving for b
isn’t difficult: we know xn = anx0 + b(1 − an)/(1 − a), so since a /∈ {−1, 0, 1}, we
have

b = (xn − anx0)
(

1− a
1− an

)
.

Substituting the numbers from our example, we get

b = (40000− 1000(1.00375)60)
(
−0.00375

1− 1.0037560

)
≈ 577.08.

So if we deposit $577.08 every month for five years, we should have our goal. Let’s
check:

xn = 1000(1.00375)60 + (577.08)
(

1− 1.0037560

−0.00375

)
≈ 40000.15.

Perfect!

This is also the way that loan payments are determined.

Exercise 8.2. We’ve saved $40,000, and now are using it to pay the down
payment on a $200,000 home.

(i) Write a linear difference equation for xn, the amount of outstanding debt
on the loan after n months, using the interest rate i and the monthly
loan payment p.

(ii) The bank is offering a 30-year mortgage at 6% interest. How much will
the monthly payment be? (Round up to the nearest cent)

(iii) How much will we have actually paid?

Exercise 8.3. Let’s look at a different situation: suppose we enter the work-
force at the age of 20 and begin saving immediately for retirement at age 65. We
open an account at an annual rate of 5.4% compounded monthly, into which we
will make regular monthly payments.

(i) If we deposit $100 per month, how much will we have saved for our
retirement, to the nearest cent?
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(ii) Let’s say instead that we deposit $100 per month for 10 years, after
which we realize that our pay has increased so that we can put in $500
per month. How much will we have upon retirement?

(iii) Now, suppose at at 20 we instead decide that we would like to have
save $1,000,000 by the time we retire. How much should we deposit per
month?

3.2. Population Models. Another common application of iterated linear
functions is in the study of population models. For example, a certain pond in
which trout are not able to reproduce is annually stocked with 2000 trout. If only
2/3 of the trout survive from year to year, at what population will the pond stabi-
lize?

This is clearly a linear model: if xn is the number of trout in the pond in year
n, then we have xn = 2000 + 2xn−1/3. When we use our theorem to determine a
closed form for xn, we get

xn = 2000
(

1− (2/3)n

1/3

)
= 6000

(
1−

(
2
3

)n)
.

Now, as n grows to infinity, 2
3

n tends toward 0. So the population of the pond will
stabilize at 6000 on a long enough timeline.

Exercise 8.4. Given a general exponential function of the form f(n) = ckn,
is there some linear difference equation xn = axn−1 + b such that f(n) = xn?

Exercise 8.5. What are some other common applied models that take this
form? What are the underlying linear relationships?



CHAPTER 9

Approximation of Fixed Points

The workshop on linear function presented the one-line (two-scale) graph of a
linear functions. There we observed that the function g(x) = 4

5x + 1 maps any
point other than 5 to a point closer to 5 and the point 5 is mapped to itself. Thus,
the point 5 is called a fixed point of the function g(x). One can take advantage of
this observation and repeatedly apply the function to get successive approximations
that get closer and closer to the fixed point. Suppose we start with any number
other than 5, say x = 1.5 to be explicit. The function g(x) maps 1.5 to 2.2. It
maps 2.2 to 2.76, and 2.76 to 3.208. If we continue in this way, we obtain a list
( or sequence ) of numbers each of which is closer to 5 than the previous number.
Indeed, we have |f(1.5) − 5| = |f(1.5) − f(5)| = | 45 (1.5 − 5)| = 4

5 (3.5). In general,
the distance from one approximation to 5 is 4

5 times the previous distance. In
other words, the error in the approximation is reduced by a factor of 4

5 with each
application of g(x).

This idea in the method described above for the specific linear function g(x) =
4
5x+ 1 has been used since antiquity, even in ancient Babylon, to find approximate
solutions of equations. In fact Heron of Alexandria (who lived around the middle
of the first century) has been credited with using it to find

√
3. His reasoning goes

something like this: Guess a value for
√

3, call it x0. If x0 is less than
√

3, then 3
x0

will be greater than
√

3. So
√

3 must lie between x0 and 3
x0

. Conversely, if x0 is
greater than

√
3, then 3

x0
will be less than

√
3. So again,

√
3 must lie between x0

and 3
x0

. Thus, in either case, the average of x0 and 3
x0

is likely to be an even better
approximation to

√
3. Therefore, take

x1 =
1
2

(
x0 +

3
x0

)
as the next approximation, and repeat the process. It is worthwhile to state this
idea more generally, for any positive number a, as an algorithm.

Algoritm 1. Let a be a positive number and let x0 be an approximation to
the square root of a.
For n = 1, 2, . . . calculate

xn =
1
2

(xn−1 +
a

xn−1
)

It is easy to do the calculations in this algorithm on the TI-89 calculator. In
fact there are several ways to do them, the simplest being the method shown in
Figure 9.1. Here we first store the value 3 in a, then store 1.5 in x, then enter
(x+a/x)/2→x and press ENTER. This calculates the first approximation 1.75 and
stores it in x. Now each time ENTER is pressed, the calculator computes another
approximation. The next screen shows the second and third approximations.
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Figure 9.1.

 

Figure 9.2.

This idea of successive approximations can be stated in the following very
general form,

Algoritm 2. Let x0 be an initial approximate solution to the solution of an
equation written in the form x = g(x).
For n = 1, 2, 3, . . . calculate additional approximations as follows:

xn = g(xn−1)

Two additional methods for getting the approximations on the TI-89 are now
considered. The first method uses the sequence capability of the TI-89 and the
second uses a short program. We illustrate the sequence method for the Heron’s
algorithm and then show how to write a program to implement the general algo-
rithm.

For sequence method, first, store 3 in a. Then press MODE and select SEQUENCE
for the graph option as shown in Figure 9.3.

 

Figure 9.3.

Then press ♦ TblSet and use the setup values shown in Figure 9.4. Press
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Figure 9.4.

♦ WINDOW and enter the values shown in Figure 9.5. Press ♦ Y= and enter the

 

Figure 9.5.

expression from the algorithm and the starting approximation shown in Figure 9.6.

 

Figure 9.6.

Now press ♦ TABLE to get the the table of approximations shown in Figure 9.7.

Exercise 9.1. Use the method of Heron of Alexandria on a calculator to find
accurate approximations to the following square roots.

(i)
√

16, take x0 = 2
(ii)
√

5, take x0 = 2
(iii)

√
329, take x0 = 20

An application of the method of successive approximations was used by some
early electronic computers to perform the operation of division approximately while
using only the operations of addition, substraction, and multiplication. Since these
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Figure 9.7.

computers used base 2 arithmetic, they could of course find the reciprocal of a
power of 2 by simply changing the sign of the power. Dividing b by a is equivalent
to solving the equation ax = b for x. By multiplying both sides of this equation by a
suitable power of 2 we obtain an equivalent equation a′x = b′ where 1

2 ≤ a
′ < 1. For

example, suppose we want to divide 8 by 2.5. This is equivalent to solving 2.5x=8.
If we multiply both sides of this equation by 1

22 = .25, we obtain .625x = 2. In
the general case, we now assume that the equation ax = b has been transformed
by multiplying by a power of 2 so that 1

2 ≤ a ≤ 1. Now rewrite this equation in
the form x = (1 − a)x + b. Notice that 0 <≤ (1 − a) ≤ 1

2 . Let x0 be an initial
approximation to b

a . For the equation .625x = 2 this yields x = .375x + 2 When
we calculate the successive approximations starting with x0 = 2 we obtain the
.275, 3.03125, 3.13672, 3.17627, etc. These calculations are easy to do using the
TI-89. First, type .375*2+2 and press ENTER. Next type *.375+2, the calculator
displays ans(1)*.375+2, and press ENTER. Now simply press ENTER repeatedly to
get subsequent approximations.
To see what is going on, consider again the general case in the form x = (1−a)∗x+b
with starting value x0. The next approximation is x1 = (1− a)x0 + b, and the nth
approximation is given by xn = (1 − a) ∗ xn−1 + b. Since x = b

a is a solution
of x = (1 − a)x + b and since x1 = (1 − a)x0 + b, when the second of these
equations is subtracted from the first we obtain x − x1 = (1 − a)(x − x0). Thus,
|x − x1| = (1 − a)|x − x0|, and we see that the new approximation, x1, has a
smaller error by a factor of (1− a). When we calculate x2 = (1− a)x1 + b similarly
find that |x − x2| = (1 − a)|x − x1| = (1 − a)2|x − x0|. That is, the errors in
the successive approximations decrease to zero and we can obtain highly accurate
approximations to b

a using only the arithmetic operations of addition, substraction,
and multiplication.

Exercise 9.2. Use your calculator and the above method of successive approx-
imations to solve the following equations without using division.

(i) .8x = 26 using 1 as the initial approximation.
(ii) 35x = 261 using 5 as the initial approximation after transforming the

given equation.

Here is a way to view the calculations for solving ax = b with 1
2 ≤ a < 1. Since

0 < (1 − a) ≤ 1
2 , the geometric series 1 + (1 − a) + (1 − a)2 . . . has the sum

1
1−(1−a) = 1

a . Thus, b
a = b + b(1 − a) + b(1 − a)2 + . . . . If we take x0 = b

for the method of successive approximations then we x1 = (1 − a)b + b and x2 =
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(1−a)x1 +b = (1−a)2b+(1−a)b+b. Each term of the sequence of approximations
is the sum of corresponding number of terms in the geometric series.

Exercise 9.3. Let x0 be an arbitrary initial approximation to the solution of
ax = b with 1

2 ≤ a < 1. Find algebraic expressions for x1, x2, x3, and the nth
approximation xn. Explain what happens to the term involving x0 as n gets large.

The ancient method of successive approximations is a powerful idea that is of-
ten used even today for finding solutions of equations. However, it is often difficult
to write an equation that is of the form f(x) = 0 in an equivalent successive approx-
imation form, x = g(x), so that the method gives better and better approximations
from step to step. Moreover, the quality of the approximations can change signif-
icantly when the form of the iteration function, g(x), in the fixed point equation
is changed only slightly. In fact, a poor choice of g(x) can lead to a sequence that
moves further away from a solution. The essential requirement for getting better
approximations at each step is that the solution be a point of attraction of the
fixed point of g(x). That is, points near the fixed point should be mapped by g(x
to points closer to the fixed point as in our first example.

Consider the equation

2x3 − 2.3x2 − 3.49x+ 2.07 = 0.

This cubic equation has three real roots. One can discover this by plotting a graph
or by examining a table of values and noting where the function values change
sign. For instance, the function. f(x) = 2x3 − 2.3x2 − 3.49x + 2.07 has the value
-1.72 when x = 1 and the value 1.89 when x = 2. So we expect to find one or
more solutions of the equation between 1 and 2. If we multiply both sides of the
equation f(x) = 0 by a constant γ and add x to both sides of the result we obtain
the equivalent equation

x = x+ γ(2x3 − 2.3x2 − 3.49x+ 2.07)

. This is a form where fixed point iteration can be tried. A good choice for γ is
tricky. There are advanced techniques that help guide the choice, but are beyond
the scope of this work.

We will now write a general program for successive approximations on the TI-
89 and illustrate its use by applying it to obtain a solution to the above equation.
The code for the algorithm will input the initial approximation and the number of
approximations to be calculated. It is usually not easy to determine in advance how
many approximations will be needed to obtain a certain accuracy, so here we’ll rely
on trial and error. To program the method of successive approximations, begin by
pressing APPS, in the menu that appears select item 7:Program Editor, and then
choose item 3:Newand press ENTER. This gives the screen shown in Figure 9.8.

Scroll down to the Variable region and type sa followed by ENTER. In screen
that opens, you will type the program shown below where the For statement is
obtained by pressing F2 and choosing item 4:For ...EndFor.

:sa(x,k)
:Prgm
:For n=1, k,1
:y2(x)→x
:Disp n,x
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Figure 9.8.

:EndFor
:EndPrgm

Now press HOME to return to the home screen. To use this routine, the function
g(x) is entered as item y2 in the Y= list of functions. To access this list type
♦ Y=. For the specific equation above with γ = −.1, we first store -.1 in γ by
typing -.1→2nd CHAR, selecting 1:Greek, then selecting 4:γ, and finally pressing
ENTER. Now enter the function f(x) as y1 and g(x) as y2 in the Y= list as shown in
Figure 9.9.

 

Figure 9.9.

Return to the home screen and type sa(2,6) (as shown on the first screen
below) followed by ENTER to get the first six approximations for the initial approx-
imation of 2. The results are shown in Figure 9.10.

 

Figure 9.10.

The table in Figure 9.11 shows the sequence of successive approximations ob-
tained with γ = −.1 and x0 = 2.
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Figure 9.11.

Exercise 9.4. Find the first 5 successive approximations for the equation

x = x+ γ(2x3 − 2.3x2 − 3.49x+ 2.07)

when:
(i) γ = −.1 and x0 = 1.
(ii) γ = −.130378 and x0 = 2.

(iii) γ = .2 and x0 = 1.
(iv) γ = −.2 and x0 = −1.
(v) γ = −.2 and x0 = −2.

(vi) γ = .2 and x0 = −2.

The trapezoid method for approximating the area of a region is an instance
where an approximation is obtained by replacing a function f(x) with a simple
linear function over a short interval. That idea can be applied as well to the problem
of finding approximations to the solution of an equation f(x) = 0. Suppose that
two approximations, x0 and x1, are known. We can take as a next approximation,
x2 the point where the line joining (x0, f(x0)) and (x1, f(x1)) crosses the x-axis.
That leads to the following algorithm.

Algoritm 3 (Secant Method). Let x0 and x1 be approximate solutions of the
equation f(x) = 0.

For n = 1, 2, 3, . . . , calculate

xn+1 =
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)

Here is a TI-89 program for the secant method. It is entered like the code of
the successive approximation algorithm. In this case, the first items that are input
to the program are the first two approximations to a solution. The third item is
the number of additional approximations to be calculated.
:secant(a,b,k)
:Prgm
:For n,1,k,1
:(a*y1(b)-b*y1(a))*1./(y1(b)-y1(a))→c
:Disp n,c
:b→a
:c→b
:EndFor
:EndPrgm
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When the code for the secant method is applied with f(x) = 2x3− 2.3x2− 3.49x+
2.07 using x0 = 1.5 and x1 = 2, the approximations obtained are shown in Fig-
ure 9.12.

Figure 9.12.

Exercise 9.5. “Deciding where to put the frets on a guitar depends, in effect,
on finding an approximate construction of the twelfth root of 2.”(Ian Stewart,
Faggot’s fretful fiaso, in Music and Mathematics: From Pythagoras to Fractals,
Edited by John Fauvel, Raymond Flood, and Robin Wilson, Oxford University
Press, 2003) Since 112 = 1 and 212 = 4096, the twelfth root of 2 lies between 1 and
2, but will be much closer to 1. Use the secant code and your TI-89 to find the
approximate value of the twelfth root of 1.

We have seen that the method of successive approximations is a useful tool
for finding approximations to solutions of equations with one unknown. Could it
be used to approximate the solution of two equations with two unknowns? To be
specific, consider the supply and demand equations

x+ 2y = 900
2x− 3y = 50

The point of stability is a value for x and a value for y that simultaneously satisfies
both equations. Of course this solution can be found quite easily, but the question
we want answered is: Can these equations be rewritten in an equivalent form so
that successive approximations will give accurate approximations to the solution?
For the case of a single linear equation in one unknown, ax = b, we saw how to
transform the equation to an equivalent equation a′x = b′ where 1

2 ≤ a
′ < 1. Then

this equation can be written as x = (1 − a′)x + b′ and successive approximations
led to accurate approximations. Now, we have two equations and two unknowns,
so we want to obtain two approximations at each step and we want both of the
errors to decrease. Let’s suppose that the system

ax+ by = g

cx+ dy = h

can be transformed to the equivalent system

a′x+ b′y = g′

c′x+ c′y = h′
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where 3
4 ≤ a′ < 1, |b′| < 1

4 , |c′| < 1
4 , and 3

4 ≤ d′ < 1. Then when successive
approximation is applied to

x = (1− a′)x− b′y + g′

y = −c′x+ (1− d′)y + h′

the errors satisfy

xn+1 − x = (1− a′)(xn − x)− b′(yn − y)
yn+1 − y = −c′(xn − x) + (1− d′)(yn − y)

Since 0 < 1− a′ ≤ 1
4 and 0 < 1− d′ ≤ 1

4 we have

|xn+1 − x| ≤
1
4
|xn − x|+

1
4
|yn − y|

|yn+1 − y| ≤
1
4
|xn − x|+

1
4
|yn − y|

It is not obvious how to transform a given system to an equivalent one where the
coefficients satisfy the conditions specified above. There are four coefficients to
modify and to obtain an equivalent system. We can multiply the first equation by
any non-zero constant, m11 and add to it a multiple m12 of the second equation.
Similarly, we multiply the second equation by a non-zero multiply m22 and add to
it a multiple m21 of the first equation. With these four multiples, we can carry out
the transformation. This is illustrated in the following example.

Example 8.

Let’s return to the system of demand and supply equations considered above.
The equivalent system becomes

(m11 + 2m12)x+ (2m11 − 3m12)y = m11g +m12h

(m21 + 2m22)x+ (2m21 − 3m22)y = m21g +m22h

Thus, we want to choose values of m11 and m12 such that

3
4
≤ m11 + 2m12 ≤ 1 and |2m11 − 3m12| ≤

1
4

and values of m21 and m22 such that

|m21 + 2m22| ≤
1
4

and
3
4
≤ 2m21 − 3m22 ≤ 1.

By considering contour plots of u+ 2v and 2u− 3v we find that the inequalities are
satisfied by taking

m11 = 0.8, m12 = .2, m21 = .1, m22 = .9.

Thus the iteration equations are:

xn+1 = .2xn − .2yn + 370
yn+1 = −.1xn + .1yn + 265
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Using the starting values of x0 = 300 and y0 = 300 the first five computed approx-
imations are:

n xn yn
0 300. 300.
1 370. 265.
2 391.0 254.5
3 397.30 251.35
4 399.190 250.405
5 399.7570 250.1215

Notice that the values of xn are getting closer to 400, while those of yn are getting
closer 250. The exact solution of the system is x = 400 and y = 250. Examine the
errors in each of the approximations given above.

Exercise 9.6. Using the iteration equations in the example calculate the first
five approximations using the indicated starting values.

(i) x0 = 0, y0 = 0
(ii) x0 = −100, y0 = 800

Can one obtain accurate approximations using any starting values? Why?

Exercise 9.7. Another choice for the multipliers mij is:

m11 = .429, m12 = .286, m21 = .286, m22 = −.143

(i) Find the iteration equations for this choice of multipliers.
(ii) Calculate the first five approximations using the starting values in the

previous exercise.

We have seen that there are many choices for the multipliers that will yield
to accurate approximations for the solution of this linear system. Is one choice
better than another? If one choice gives accurate approximations in fewer steps
than another, it presumably would be preferred. In this sense, the choice—

m11 =
4
7
, m12 =

2
7
, m21 =

2
7
, m22 = −1

7
is as good as it gets, since it yields the iteration equations

xn = 400
yn = 265

These equations give the exact solution at each iteration with out regard to the
initial approximation! Notice that these multiples arise from the standard method
of elimination for solving the system of equations.

We explored the possibility of using the method of successive approximations
to get approximate solutions to a system of two linear equations simply because the
question arose naturally in the context of our study of successive approximations.
When questions occur naturally to you, explore them! It’s fun to do so, and very
satisfying to get an answer to a question. Mathematicians do this frequently when
exploring the frontiers of a subject. When found that the method of successive
approximations could be used to solve the linear system, did we discover a better
method? Well, the last observation for a set of multipliers might suggest that the
elimination method gives the best multipliers so why not just use them and toss
our findings in the waste basket. But we can’t foresee all possible applications. For
instance, maybe our approach could lead to techniques for solving larger systems
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approximately, say 100 or more equations. Or there might be an application where
systems with nearly the same equations must be solved many times. Since the
equations are nearly the same, a single set of multipliers could determined and
used each time a system needs to be solved. Moreover, although the simple linear
system we examined can be easily solved, there are non-linear systems that can be
difficult to solve. The method of successive approximations can be used for these
systems as well, and what we learned from studying this simple case might give us
insight for this more difficult problem.





CHAPTER 10

Algebra Counts!

1. Introduction to Counting

Counting problems have many applications in mathematics and in many ap-
plications of mathematics. For example, within mathematics the ability to count
complicated sets of objects is essential to finite probability (e.g how many of all
possible 5-card hands are full houses?). For an example outside of mathematics,
a typical counting problem from computer science might go like this; how many
strings of n 0’s and 1’s have no repeated 0s? One of the most powerful counting
techniques involves the algebra of polynomials and it extension to infinite polyno-
mials or formal power series. But before we get to the algebra, we review the basic
counting formulas.

The simplest counting problems are those involving ordering or selecting ele-
ments from a set. First off consider n people; how many different ways can they
line up? There are n choices for the person at the head of the line then (n − 1)
choices for the second in line. So we can fill the first two positions in the line in
n× (n− 1) different ways. The first three positions can then be filled in n× (n− 1)
times (n − 2) different ways. And so on. So the entire group can be lined up in
exactly n× (n− 1)× (n− 2)× · · · × 3× 2× 1 different ways. We have a short hand
notation for this number, the product of all natural numbers from n down to 1: n!,
n factorial in words. The convention is to interpret 0! as 1 not 0.

Now suppose there are n people in candidacy for r distinct positions where
r ≤ n. An assignment of r of the candidates to the r jobs is called an r −
permutation. How many different ways can the positions be filled, that is how
many r-permutations from an n-set are there? There are n choices of candidates
to fill the first position, n − 1 for the second, and so on, down to n − (r − 1)
choices of the last position. Thus the number of r-permutations from an n set,
P (n, r) = n(n − 1)(n − 2) . . . (n − r + 1). We can write this in simpler form using
factorial notation. We have n! = P (n, r) × (n − r) × (−r − 1) . . . 1 and dividing
both sides by (n− r)! gives the formula P (n, r) = n!

(n−r)! . Recalling the convention
0!=1, we have P (n, 0) = n!

n! = 1.
Another simple counting formula is that for the r − combinations from an n-

set: C(n, r) = n!
r!(n−r)! . This is the formula we would use if all of the jobs in the

previous example were identical. In this case we are simply choosing a subset of r
candidates from the set of n candidates and hiring all of them. It is not too hard
to justify this formula using the permutation formula. Let N denote the n job
applicants and let S be one possible set of r applicants to hire. Even though the
r jobs are identical, designate them job 1, job 2, . . . , job r. Now there are r! ways
we can assign the candidates in S to these labeled jobs and each such assignment
is an r-permutation from N . And of course every r-permutation comes from some
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r−combination. Looking the other way around, every r−combination comes from
exactly r!, r-permutations and C(n, r) = P (n,r)

r! = n!
r!(n−r)! . Since there is exactly

one subset with zero elements, namely the empty set and we see that the convention
0!=1 gives the correct answer: C(n, 0) = n!

1×n! = 1.
Thinking of these two formula abstractly let N be any set of n elements. C(n, r)

counts the number of subsets of N that contain exactly r elements while P (n, r)
counts the number of ways that you can select r elements one at a time in order. The
two features that are relevant are: there are no repeats allowed in the selection (both
cases) and whether the selection is ordered (permutations) or not (combinations).

Exercise 10.1. Let the set N consist of the first 5 letters of the alphabet:
A,B,C,D,E. Make a list of all 10 subsets of 3 letters. The problem with listing
subsets is that, while they are unordered, we must write down the elements in some
order. We will avoid writing down the same set twice in different order by listing
the elements of each sub set in alphabetic order. Then besides each set of 3 letters,
list the 5 additional ways of ordering the letters in that set, there by expanding the
list of C(5, 3) = 10 combinations to a list of P (5, 3) = 60 permutations.

Now think about using the letters to make words or license plates. Like with
permutations, the order makes a difference; but in this case repeats are allowed.
These are often called r-selections but there is no special notation for them. In
terms of set theory: you have a set N of n elements and you select r elements, one
at a time; however, when you select an element, you write down the result of your
selestion and then return the element to N . So each time you are selecting from
the full set and the result is the ordered list of the items you selected. Hence it
is easy to count the r-selections: there are n possibilities for the first element in
your list, n possibilities for the second element in your list,. . . ,n possibilities for
the last element in your list. Hence the number of r-selections from an n set is
n× n× . . . n = nr.

Exercise 10.2. In the last exercise, you listed all 60 of the length 3-permutations
from the set{A,B,C,D,E}. These are the 3-selections with no repeats. To com-
plete the list of all of the 53 = 125 3-selections, you must list all of the 3-selections
with repeated elements.

We summarize these three formulas in the following chart:

repeats permitted no repeats

unordered

ordered

? C(n, r) = n!
r!(n−r)!

nr P (n, r) = n!
(n−r)!
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When we summarize in this way it is clear that one formula is missing: the unordered
selections (with repeats permitted). For an example where this formula would be
of use, consider packages of 20 candies in 5 different flavors. Here n = 5 is the set
of flavors and r = 20 is the number of candies chosen. Of course we must permit
flavors to be repeated and, since they are all put in a bag, there is no order to
this selection. We will derive this missing formula as we develope our algebraic
approach to counting.

Exercise 10.3. List the unordered 3-selections from the set{A,B,C,D,E}.

2. The Binomial Theorem

The Binomial Theorem. (1 + x)n =
n∑
i=0

(
n

i

)
xi , where

(
n
i

)
= n!

i!(n−i)! .

It follows that the binomial coefficient
(
n
i

)
equals C(n, i) and may be interpreted as

the number of i-subsets of an n-set. Before we give a formal proof of the binomial
theorem, let’s demonstrate this identification by way of an example. Suppose that
we had a basket of fruit containing one apple, one banana, one cantaloupe, and one
date. Represent each fruit by its first letter and expand the following polynomial:

(1 + a)(1 + b)(1 + c)(1 + d) = 1 + a+ b+ c+ d

+ ab+ ac+ ad+ bc+ bd+ cd

+ abc+ abd+ acd+ bcd+ abcd.

Each term of the expansion represents a specific selection of fruit: b represents
selecting only the banana, ad represents the selection of the apple and the date, 1
represents selecting no fruit, etc. If all we wish to know is the answer to question
”How many ways can we select two pieces of fruit from the basket?,” we may replace
each individual factor by (1 + x) to get (1− x)4. Then the coefficient of x2 in the
expansion is the number two letter terms in the expansion above, that is the number
of 2-element subsets from our basket. Similarly, the coefficient of x is the number
of 1-element subsets, the coefficient of x3 is the number of 3-element subsets and
the coefficient of x4 is the number of 4-element subsets.

Proof. We start the proof of the binomial theorem by defining
(
n
i

)
to be

n!
i!(n−i)! and then, by direct computation, proving the identity

(
n−1
i−1

)
+
(
n−1
i

)
=
(
n
i

)
,

for all 0 < i ≤ n:

(
n− 1
i− 1

)
+
(
n− 1
i

)
=

(n− 1)!
(i− 1)!(n− i)!

+
(n− i!

i!(n− 1− i)!

=
i

i

(n− 1)!
(i− 1)!(n− i)!

+
(n− i)
(n− i)

(n− i!
i!(n− i− 1)!

=
i(n− 1)!
i!(n− i)!

+
(n− i)(n− i!
i!(n− i)!

=
i(n− 1)! + (n− i)(n− i!

i!(n− i)!
=

n!
i!(n− i)!
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Now we are ready to prove the binomial theorem by induction on n. Clearly, it
holds for n = 1:

(1 + x)1 = 1 + x =
(

1
0

)
+
(

1
1

)
x.

Now, for n > 1, we assume that the binomial theorem has been shown to hold for
n− 1:

(1 + x)n−1 =
(
n− 1

0

)
+
(
n− 1

1

)
x+

(
n− 1

2

)
x2 + · · ·+

(
n− 1
n− 1

)
xn−1

Then:

(1 + x)n = ((1 + x)(1 + x)n−1

= (1 + x)
((

n− 1
0

)
+
(
n− 1

1

)
x+ · · ·+

(
n− 1
n− 1

)
xn−1

)
=
(
n− 1

0

)
+
(
n− 1

1

)
x+ · · ·+

(
n− 1
n− 1

)
xn−1+

+
(
n− 1

0

)
x+ · · ·+

(
n− 1
n− 2

)
xn−1 +

(
n− 1
n− 1

)
xn

=
(
n

0

)
+
((

n− 1
1

)
+
(
n− 1

0

))
x+ · · ·+

((
n− 1
n− 1

)
+
(
n− 1
n− 2

))
xn−1 +

(
n

n

)
xn

=
(
n

0

)
+
(
n

1

)
x+ · · ·+

(
n

n− 1

)
xn−1 +

(
n

n

)
xn

So the result holds for n = 1 and, if the result holds for n−1, it holds for n. Hence,
by induction the result holds for all n. �

We call the polynomial (1−x)n the generating function for the numbers of sub-
sets of an n-set. In general, if we have a sequence of numbers, C(n, 0), C(n, 1),. . . ,
C(n, n) in this case, the polynomial with these numbers as coefficients of the powers
of x, C(n, 0) +C(n, 1)x+ · · ·+C(n, n)xn in this case, is called the generating func-
tion for that sequence of numbers. The binomial theorem states that the generating
function for the combinations of n things can be written succinctly at (1−x)n. The
remainder of this chapter is devoted to developing algebraic techniques for finding
a succinct form for the generating function of a given sequence of numbers.

3. Enumerators and Generating Functions

Let’s return to our fruit basket example from the last section:

(a0 + a1)(b0 + b1)(c0 + c1)(d0 + d1) = a0b0c0d0 + a1b0c0d0 + a0b1c0d0 + a0b0c1d0

+ a0b0c0d1 + a1b1c0d0 + a1b0c1d0 + a1b0c0d1

+ a0b1c1d0 + a0b1c0d1 + a0b0c1d1 + a1b1c1d0

+ a1b1c0d1 + a1b0c1d1 + a0b1c1d1 + a1b1c1d1.

The factor (a0+a1) is called the apple enumerator ; (b0+b1) the banana enumerator ;
and so on. The expansion is called the generating function of this selection problem.
To answer the question ”How many ways can we select two pieces of fruit from the
basket?,” we replaced each individual enumerator by (x0 +x1) or simply (1 +x) to
get the subset generating function (1− x)n.
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With this problem to guide us, let’s consider a more complicated counting prob-
lem. Suppose our basket contains two apples, along with the banana, cantaloupe,
and date. If the apples were distinct, for instance one red and one green, we would
simply replace the apple enumerator (a0 +a1) with the red and green enumerators,
(r0 + r1) and (g0 + g1), and then proceed as above. Thus for the answers to our
counting problems, we would look to the expansion of (x0 + x1)5 = (1 + x)5. How-
ever, the situation changes when the apples are identical – for instance, both apples
are red. If we were to replace (a0 +a1) with (r0 + r1) twice (that is, (r0 + r1)2), we
would get terms like r1b1c1d1 twice. This would mean that the apples were being
considered as distinct. If we include only (r0 + r1) once, we would never get terms
such as r2b0c0d1, so we could never count the selection of both apples.

So what must we do? We need a way to adjust the apple enumerator so that
it reflects the possibility of selecting either 0, 1, or 2 apples, and each of these in
only one way. If, as in our first attempt, we replace (a0 + a1) with (r0 + r1)2 =
(r0 + 2r1 + r2), we can quickly see that it counts the selection of just a single apple
twice. So then it seems that what we really want to accomplish will be done by
replacing (a0 + a1) by (r0 + r1 + r2).

Exercise 10.4. Consider a fruit basket containing two red apples, one banana,
one cantaloupe, and one date.

(i) Expand (r0 + r1 + r2)(b0 + b1)(c0 + c1)(d0 + d1) and verify directly that
all possible ways of selecting some fruit from the basket are represented
correctly.

(ii) Replace all variables by x in the above expression to get (1+x+x2)(1+x)3.
Then rewrite this in the form (1+x)4+x2(1+x)3 and, using the binomial
theorem, show that:

(1 + x+ x2)(1 + x)3 =
5∑
i=0

[(
4
i

)
+
(

3
i− 2

)]
xi

= 1 + 4x+ 7x2 + 7x3 + 4x4 + x5,

where
(
n
i

)
is understood to be 0 whenever i is outside the interval [0, n].

(iii) For each i = 0 to 5, explain by a direct counting argument that the
coefficient of xi is indeed the number of ways that one may select i pieces
of fruit from this basket.

Exercise 10.5. Consider a fruit basket containing three each of apples, ba-
nanas, cantaloupes, and dates.

(i) Find the enumerator for each kind of fruit, replace all variables by x and
write down the generating function (as a product) for selecting i pieces
of fruit from this basket. Let g(x) denote this generating function.

(ii) Factor (1+x+x2 +x3) and rewrite g(x) in terms of powers of the factors.
Then expand each of these powers using the binomial theorem.
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(iii) Show that:

g(x) =

[
4∑

h=0

(
4
h

)
xh

] 4∑
j=0

(
4
j

)
x2j


=

12∑
i=0

 4∑
j=0

(
4

i− 2j

)(
4
j

)xi.
(iv) Interpret j in the above formula as the number of kinds of fruits in

a selection which appear more than once. Show by directly listing all
possibilities that

[∑4
j=0

(
4

3−2j

)(
4
j

)]
does count all of the ways that one

may select 3 pieces of fruit from the basket.
(v) Show by listing all possibilities that

[∑4
j=0

(
4

7−2j

)(
4
j

)]
does count all of

the ways of selecting 7 pieces of fruit from the basket.

Exercise 10.6. Consider a fruit basket containing four each of apples, bananas,
cantaloupes, and dates. Give the enumerator (as a product) for each of the following
counting problems. After you have set up each problem, go back and simplify each
of the generating functions. Finally, try to compute the coefficients for the terms
in the expansion of each generating function.

(i) In selecting fruit from the basket, you must select at least one of each
kind of fruit.

(ii) In selecting fruit from the basket, you must select an odd number of each
kind of fruit.

(iii) In selecting fruit from the basket, you must select an even number of
each kind of fruit.

4. The Great Enumerator

Consider our fruit basket again and suppose that it contains 5 apples. Then
the apple enumerator is (a0 + a1 + a2 + a3 + a4 + a5). In general, if the basket
contains m apples, the apple enumerator will be (a0 + a1 + · · ·+ am). What if we
wish to consider a masket with an unlimited supply of apples? In this case, the
natural choice for the enumerator is the infinite polynomial

(a0 + a1 + · · ·+ am + · · · ).

This leads naturally to a question of whether we can do algebra with infinite poly-
nomials. The answer, of course, is yes; operations of addition and multiplication
are defined exactly as in the finite case. For example, consider our basket with an
unlimited supply of apples, and exactly one banana. The generating function for
selecting fruit from the basket is either

(a0 + a1 + · · ·+ am + · · · )(b0 + b1)

or
(1 + x+ · · ·+ xm + · · · )(1 + x),

depending upon whether we wish the terms to represent the actual choices for
selecting i pieces of fruit, or simply the number of such selections.
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Let us first consider (a0 + a1 + · · ·+ am + · · · )(b0 + b1). Term-by-term multi-
plication gives us:

a0b0 + a0b1 + a1b0 + a1b1 + a2b0 + a2b1 + · · ·+ amb0 + amb1 + · · · .
Turning instead to g(x) = (1 + x+ · · ·+ xm + · · · )(1 + x), we easily see that

g(x) = (1 + x+ · · ·+ xm + · · · ) + (x+ x2 + · · ·+ xm + · · · )
= 1 + 2x+ 2x2 + 2x3 + · · ·+ 2xm + · · · .

We relate these two expansions by observing that, for all m > 0, am−1b1 and amb0

represent the two ways one may select m pieces of fruit from this basket.
Now, let’s suppose that the basket contains an unlimited supply of both apples

and bananas. Again, we have infinite polynomials which model this case:

(a0 + a1 + · · ·+ am + · · · )(b0 + b1 + · · ·+ bm + · · · )
or

(1 + x+ x2 + · · ·+ xm + · · · )2.
Expanding the first product and grouping by the sum of the exponents, we get:

a0b0 +
(
a0b1 + a1b0

)
+
(
a0b2 + a1b1 + a2b0

)
+ · · ·

+
(
a0bm + a1bm−1 + · · ·+ amb0

)
+ · · · .

Expanding (1 + x+ x2 + · · ·+ xm + · · · )2, we get:

1 + 2x+ 3x2 + · · ·+ (m+ 1)xm + · · · .
Thus, for example, we may select 5 pieces of fruit from our basket in 6 different

ways. Using the first model, we identify the six ways as: 5 apples, 0 bananas; 4
apples, 1 banana; 3 apples, 2 bananas; 2 apples, 3 bananas; 1 apple, 4 bananas; or
0 apples, and 5 bananas.

It is clear that, if we wish to pursue the investigation of unrestricted selections,
we will need to be very comfortable with the multiplication of infinite polynomials.
In particular, we will need to be comfortable with products involving the enumerator
(1 + x+ x2 + · · ·+ xm + · · · ). This particular enumerator is so useful, we will call
it the great enumerator. One product involving the great enumerator which is of
particular interest is

(1− x)(1 + x+ x2 + · · ·+ xm + · · · ) = 1.

Thus, surprisingly, we may identify the great enumerator by the notation
1

1− x
= (1 + x+ x2 + · · ·+ xm + · · · ).

5. Algebra Counts! – Exercise Set 2

Exercise 10.7. Let (a0 + a1x+ a2x
2 + · · ·+ amx

m + · · · ) denote an arbitrary
infinite polynomial and consider the product

1
1− x

(a0 + a1x+ a2x
2 + · · ·+ amx

m + · · · ).

(i) What is the coefficient of xn in the expansion of this product?
(ii) Use your preceding answer to compute the coefficient of xn in 1

(1−x)2 .
(iii) Use your two preceding answers to compute the coefficient of xn in 1

(1−x)3 .
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Exercise 10.8. Consider Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

...
1 n

(
n
2

)
· · ·

(
n
2

)
n 1

(i) Recall that the coefficients of the expansion of (1 +x)n form the nth row
of Pascal’s Triangle. Observe that, for n = 1, 2, 3, the coefficients of the
expansion of 1

(1−x)n form the nth diagonal of Pascal’s Triangle.
(ii) Using the binomial identities, give a proof by induction for:

1
(1− x)n

= 1 +
(
n

1

)
x1 +

(
n+ 1

2

)
x2 + · · ·+

(
n+ i− 1

i

)
xi + · · · .

“Algebra Counts!” was originally written as an MTRC3 workshop by Jack Graver in

April 1995.
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