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Making Change Efficiently
Jack E. Graver

Suppose U.S. coinage were to be drastically reformed so that coins of only one denom-
ination beyond the penny were minted. What value, k, of this coin would allow change
to be made most efficiently? More generally consider a system of currency where the
smallest paper note has value d¢. Making change then means being able to hand over,
in 1¢ and k¢ coins, any value from 1¢ to (d − 1)¢. What value for k makes this system
most efficient?

Even this two-denomination problem is not so simple. The difficulty lies in the fact
that the solution requires a minimum of a maximum of a minimum. In this paper,
we describe how to lead a student to solve completely the two-denomination prob-
lem for any currency, while developing the skills needed to tackle the much harder
three-denomination problem. While calculus is not needed for the two-denomination
problem, it proves useful for the extension to three denominations. In any case, some-
one tackling this project needs the same level of comfort with functions and graphs as
a calculus student. It is hoped such a student will find these exercises enjoyable as well
as enlightening.

Warm-up problems
Problem 1. For current US coinage (1¢, 5¢, 10¢, 25¢ and 50¢ coins), what amount
of change requires the most coins? How many coins is that? What is the least number
of coins that you must carry so that you can make any change of 99¢ or less? Which
coins do you need?

Problem 2. Again consider US coinage but now suppose that coins are minted in
only one denomination beyond 1¢. Let k denote this denomination and answer the
following questions for k equal to 5, 10, 25 and 50.
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(i) What amount (or amounts) of change requires the maximum number of coins?
How many coins is that?

(ii) What is the least number of coins that you must carry so that you can make any
amount of change? Which coins are required?

On the basis of your solution to this problem, if you were to mint only coins in two
denominations, 1¢ and k¢, which value of k in the above range would you choose and
why?

Measuring efficiency
There are two slightly different measures of efficiency in the coinage problem. We
can ask for the k that minimizes the maximum number of coins that some particular
amount of change demands. Or we can ask for the k that minimizes the number of coins
that need to be carried so as to make any amount of change. The following problems
make each of these precise and show that they are only slightly different.

First fix the denomination k and consider the function: fk(t) = the minimum num-
ber of coins needed to make t¢ in change. Figure 1 displays the saw-tooth shaped
graph of fk(t). We are actually interested in the maximum of fk(t) over all t less than
d . This leads us to define

gk(t) = max{ fk(s) | 1 ≤ s ≤ t}

in hopes of eventually calculating gk(d − 1).
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Figure 1.

A nice feature of gk(t) is that it is the floor of a piece-wise linear function.

Problem 3. Show that gk(t) = �Gk(t)� where

Gk(t) =
�

t if t ≤ k − 1
1
k t + (k−1)2

k if t ≥ k − 1

(Hint: Figure 2 shows the graphs of gk(t) and Gk(t) together. Find the slope of the
second segment of Gk(t) and show that it passes through the point (k − 1, k − 1).)
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Figure 2.

Problem 4. Let hk(t) denote the minimum number of 1¢ and k¢ coins one must
carry to be able to make any transaction of value t or less.

(i) Show that hk(t) is the floor of a piece-wise linear function Hk(t) and find a
formula for Hk .

(ii) Show that, for t ≥ k, Hk(t) = Gk(t) + (1 − 1
k ).

Problems 3 and 4 show that our two measures of efficiency are really the same. We
choose the functions gk(t) and Gk(t) with which to continue our investigation since
Gk(t) is easier to use.

Pursuing efficiency
For each t , we want to find the minimum of Gk(t) over all values of k. This leads us
to define still another function: R(t) = min{Gk(t) | k > 0}.

Problem 5.

(i) Graph G1(t), G2(t), G3(t), . . . , G6(t) on the same axes.
(ii) Graph R(t) for 0 ≤ t ≤ 41. Note that R(t) is piecewise, determined by the

Gk(t). Check your answer against Figure 3.
(iii) Show that

R(t) = 1
k

t + (k − 1)2

k

for (k2 − k − 1) ≤ t ≤ (k2 + k − 1), k = 1, 2, . . .

Is there a smooth function through the intersection points defining R(t)? It turns
out there is. The first step towards finding it is to represent these intersection points
parametrically. In Figure 3 the points are (1, 1), (5, 3), (11, 5), (19, 7), (29, 9) and
(41, 11).

Problem 6.

(i) Let (x, y) denote the left hand endpoint of the segment of the graph of R(t)
defined by Gk ; verify that

x = k2 − k − 1
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and

y = 1
k
(k2 − k − 1) + (k − 1)2

k
= 2k − 3.

(ii) Show that x = y2+4y−1
4 , and y =

√
4x + 5 − 2.

Thus, we may replace R(t) by S(t) =
√

4t + 5 − 2. If n = �S(t)�, then n is the max-
imum number of 1¢ and k¢ coins needed to make any transaction of value t or less, if
k is selected optimally. Now not only would we like to know the least number of coins
needed to make any transaction of value t or less, but we would also like to know the
denomination k that gives this minimum: K (t) is defined to be the integer k so that
R(t) = Gk(t).

How do we select k properly? In part (i) of Problem 6, you showed that n = y =
2k − 3; so, k = n+3

2 = �S(t)�+3
2 . Actually, when n = 2k − 3, we are at the left hand end

point of the segment of R(t) defined by k, which is also the right hand end point of the
interval defined by k − 1. Thus, when n is odd, we may take k to be either n+3

2 or n+1
2 .

When n is even, one easily checks that n corresponds to the y-coordinate of the center
of the segment of R(t) defined by k where n = 2k − 2. Hence we have

K (t) =
�

n + 2
2

�
=

��S(t)� + 2
2

�
=

�
S(t) + 2

2

�
=

�√
4t + 5

2

�

,

with the understanding that k = K (t) is often one of several choices for k.

Examples
Problem 7. Show that making change in U.S currency can be carried out with 18
or fewer 1¢ and k¢ coins whenever k is in the range: 8 ≤ k ≤ 13.

If the value of the dollar were altered slightly, to 99¢, the result is dramatically
different.

Problem 8. Show that change of 98¢ or less may be made with 17 or fewer 1¢ and
k¢ coins, but only when k = 10.

Problem 9. In Great Britain, before 1971, the pound was divided into 20 shillings
each of which was worth 12 pence. In this system, the smallest bill was one pound,
which was thus worth 240 pence. What is the most efficient two-coin system under
these circumstances? Is the ideal second coin the shilling?
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Problem 10. After 1971, Britain adopted a decimal system which is still in use. A
pound is worth 100 (new) pence. However, the smallest bill is the five pound note:
worth 500 pence. What is the most efficient two-coin system now?

Another approach
There are usually several ways to solve a problem. As we have already seen, we could
use a second, slightly different measure of efficiency. Another possibility is to use n
as our independent variable instead of t . In this case, we consider mk(n), defined to be
the maximum t so that all transactions of value t or less can be made using at most n,
1 and k cent coins. The function mk(n) is the inverse of the function gk(t). It is not too
difficult to compute.

Problem 11.

(i) Show that

mk(n) =
�

n if n < k
kn − (k − 1)(k − 2) if n ≥ k

(ii) Verify that m10(17) = 98 and explain how this was predicted by the previous
treatment.

We may think of mk(n) as a function of either n or k. Fixing n, we may ask for the
value of k which maximizes this function. As a function in k, mk(n) is quadratic:

mk(n) = −k2 + (n + 3)k − 2.

Differentiating, we see that mk(n) is maximized, as a function of k, at n+3
2 . Thus, for

a given value of n, the most efficient choice of k is n+3
2 or n = 2k − 3. This leads us

to define the perfect 2-coin currencies as those with n = 2k − 3 and dollar d amount
given by d = mk(n) + 1 = mk(2k − 3) + 1 = k2 − 1.

Problem 12. Verify that mk(2k − 3) + 1 = k2 − 1.
Table 1 lists the first few perfect 2-coin currencies:

Table 1.

k 2 3 4 5 6 7 8 9 10 11

n = 2k − 3 1 3 5 7 9 11 13 15 17 19

d = k2 − 1 3 8 15 24 35 48 63 80 99 120

In retrospect, the approach using m(n) turns out to be more efficient than using g(t).
If this problem were considered important enough to appear in textbooks, it would
probably be presented that way. Much of mathematics is presented in texts in refined
and often slick versions which do not represent the path of first discovery. This can be
very misleading. It gives the impression that one must first understand the right way to
attack a problem and then solve it. As a result, many students spend their time trying
to identify this right way and, being unable to do so, give up.
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A better approach to a mathematical problem is very much like writing a paper. First
of all, get something down, even something that you will eventually discard! In the case
of mathematics, list what you know and work a few examples. Then follow any leads
you see. A good writer also periodically reviews what is written, then edits and perhaps
reorganizes it. Exactly the same approach works here. In both writing and solving a
mathematical problem, one proceeds by cycling among different tasks: forging ahead
with a particular line of reasoning, reflecting on what is produced, reorganizing that
material, and finally identifying a new direction for study. In good writing and in good
mathematics, one must be prepared to discard much of the work one has done.

The 3-denomination problem
The next stage is to consider the three coin problem. Assume that d is the denomination
of the smallest bill, select positive integers k and h (1 < k < h) so that the maximum
number of 1¢, k¢, and h¢ coins needed to make change for all values of d − 1 or
less is as small as is possible. There are two cautions that I would give to any student
advancing to consider 3-denominations: be willing to spend a good bit of time on this
problem, and understand that you may not be able to solve the problem completely!

Project I. A natural hypothesis is that h should be chosen as the solution to the 2-
denomination problem with dollar amount d and that k should be chosen recursively
as the solution to the 2-denomination problem with dollar amount h. Try it?

Project II. Another route worth investigating is to imitate our first approach to the
two coin problem. Specifically, compute the function gk,h(t) defined to be the maxi-
mum of the numbers of 1¢, k¢ and h¢ coins needed to make each transaction from 1
to t .

It turns out, the computation of gk,h(t) can be quite messy. Instead write a computer
program for gk,h(t) inductively from 1 to t . Then one can easily make guesses and
check them.

Project III. At a certain point in any research problem one must find out what has
already been done. Just when it is best to do this is not clear. Reading what others
have done at the start may save you a lot of work; on-the-other-hand, it may lead your
thinking away from directions you might otherwise take—directions that may prove
to be quite productive.

This coinage problem is particularly hard to research since references to it are
widely scattered in the literature. A few starting points are [1, p. 191], [2], [3], and
[4, pp. 207–217].
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