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usual lattice—it’s the dual lattice that divides the plane into
unit squares such that each unit square has a lattice point at
its center. An edge is defined as a “side” of a unit square;
when we use the term side, we are speaking about a side of
the polygon. The sides of the polygon cut some of the
squares into pieces, and we call those pieces that lie inside
the polygon fragments. Fragments are categorized by the
location of the lattice point. Fragments containing a lattice
point in their interior are called interior fragments. If the lattice

point in the
fragment is
located on
the

boundary of the polygon but is not at a vertex, then it is
defined to be a side fragment. A fragment containing a vertex
of the polygon is called a vertex fragment, and a fragment
that contains no lattice point is an ordinary fragment.
Examples of these fragments are labeled in figure 2. 

A key observation is that the area of the polygon is the sum
of the areas of its fragments. 

Another concept crucial to our proof is that of matching
fragments. Two fragments are matched if they share a
boundary segment under a 180-degree rotation about the
center of a side of the polygon. (See figure 3.) Because we

The standard lattice is the set of all points in the plane
with integer coordinates. A polygon whose vertices
are points of the lattice is called a lattice polygon.

Pick’s Theorem can be used to find the area of any lattice
polygon.

Theorem. (G. Pick, 1899) Let P be a lattice polygon with I
lattice points in its interior and B lattice points on its
boundary. If A denotes the area of P, then A = I + B/2 – 1.
(See figure 1.)

There are many published proofs of this result, but almost all
of them are constructed in the same basic way. They begin
by showing that Pick’s formula gives the area for some set of
basic shapes;
the set of all
triangles, the
set of right
triangles and rectangles, and the set of triangles of area 1/2
are the three most commonly used sets. Once it is proven
that the area of these basic shapes is given by Pick’s formu-
la, one shows that all lattice polygons can be constructed by
adding and subtracting these shapes, and that the construc-
tion process respects Pick’s formula. The paper by Grün-
baum and Shephard (see the Further Reading section)
includes a good set of references to these proofs. We offer a
new proof in hopes that it will contribute to a deeper under-
standing of this important theorem. 

Before beginning the proof, we introduce a few concepts and
definitions. The lattice that we are working with is not the
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The published proofs are all constructed in the same basic way.
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contains exactly one nonordinary fragment. Each color class
containing an interior fragment can be assembled into a full
square, contributing I square units to the total area. Each
color class containing a side fragment can be assembled into
a half square. Hence, the side fragments contribute S/2 to the
total area.

Each vertex fragment is actually a sector of a square—a
sector of a square being a region of the square between two
rays from the center lattice point. The collection of vertex
sectors can then be arranged to cover a square V/2 – 1
times. Taking all of the fragments together, we see that the
total area is I + S/2 + V/2 – 1 = I + B/2 – 1. Figure 4 illustrates
this process for our example. All that is left is to fill in a few
details. 

Checking the Details
To prove Pick’s Theorem, we have to show three things: (1)
every fragment receives a unique color; (2) the fragments in a
particular color class add up to a full square, a half square, or
a sector of a square; and (3) the vertex sectors cover a
square (V/2 – 1) times. To do this, we need a better under-
standing of the half turns that match up fragments.

Let’s first see why a half turn about the center of a side will
always map the dual lattice onto itself. A side of our lattice
polygon is a segment connecting two lattice points, so there
are only a few possibilities for the coordinates of the center
point of this segment. It could be another lattice point (if the
“rise” and “run” of our segment are both even integers) or a
vertex in the dual lattice (if the “rise” and “run” are both odd).
Or it could fall on a midpoint of an edge (if the “rise” and

are rotating around the center of a side, vertex fragments are
matched to other vertex fragments. Furthermore, each vertex
fragment is matched to its two neighboring vertex fragments
when the vertices are ordered cyclically around the polygon.
In his paper “A ‘Natural’ Approach to Pick’s Theorem,”
Gordon Haigh introduced the dual lattice and used matching
to prove Pick’s formula for right triangles. But he then
completed his proof of Pick’s Theorem in the usual manner.

Pick’s Theorem makes a distinction between lattice points 
in the interior of the polygonal region and those on the
boundary. Focusing on the boundary lattice points, we let V
denote the number of vertex boundary points of the polygon
and use S = B – V for the remaining number of side boundary
points. Thus, Pick’s formula becomes A = I + S/2 + V/2 – 1,
where, as above, I denotes the number of interior points. 

The final concept we need for our proof is that of a coloring
scheme for the fragments. The fragments containing lattice
points are assigned distinct colors c1, c2, …, cI + S + V. Now
we just have the ordinary fragments left to color. We do this
by the following process: if an uncolored fragment is
matched to a colored fragment, then it adopts the color of
the latter. The process can be continued until all the frag-
ments are colored. Of course, we must show that each frag-
ment is assigned a color and that the assignments are inde-
pendent of the order in which the fragments are colored.

With these concepts in hand, the proof is easy to outline.
First, we color the vertex, side, and interior fragments with
distinct colors. Next, the ordinary fragments are matched 
and colored, with the result being that each color class
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“run” have different parity). In every case, it’s straightforward
to see that a 180-degree rotation around the center point not
only takes the dual lattice onto itself, but also maps the
boundary component along the side of a fragment onto a
corresponding “matched” boundary component on the same
side. 

Once the initial color assignments are made, only the
ordinary fragments remain to be colored. To show that our
algorithm gives a unique coloring of each ordinary fragment,
we pick a point within an arbitrary ordinary fragment (such as
point r or point t in figure 5) and draw the directed line
segment from that point to the lattice point of the square that
contains it. This segment must cross a side of the polygon
and, in fact, may do so several times.   

Starting from our selected point, consider the first side of P
encountered along this segment, and note that this side is
independent of our selected point. After a half turn about the
midpoint of this side, the rotated image of the ordinary
fragment “fits” into a square in the dual lattice. There is a
natural image for the directed line segment, which still
terminates at a lattice point. Continuing in the same direction,
the rotated directed line segment must enter a new fragment,
which is interior, side, or ordinary. If it is interior or side, we
assign our original fragment the color of this fragment. If it is
ordinary, we continue along our directed line segment until
we (necessarily) encounter a new side of our polygon and
repeat the matching process.   

Because each successive half turn uses a different side from
the one preceding it, the images of previous fragments will

continue to fit with the new matched fragment, inside a single
lattice square, and without any overlap. This implies that the
process can’t involve the same fragment twice (or else it
would be periodic) and must eventually end after a finite
number of steps at an interior or side fragment. When this
occurs, all the fragments encountered en route inherit the
color of the terminating fragment. 

To show that the union of the fragments of a given color is 
a full square for an interior fragment, we reverse the above
construction. Consider an interior fragment and select any
point within the square containing it. This time, consider a
directed segment from the center lattice point heading out 
to the selected point. Now it is possible to follow that
segment—using successive half turns whenever a side of the
polygon is encountered—until we arrive at a fragment
containing (the image of) the selected point. The fragments
encountered along the way must all be the same color, and
as before, the rotated images of the fragments will fit into a
single lattice square without overlap. Because the selected
point was an arbitrary point in the original square, we
conclude that the fragments of that color class can be
assembled into a complete square.

If we start with a side fragment, a similar argument applies,
provided our arbitrary point is chosen in such a way that the
directed segment from the center lattice point passes
through the interior of the side fragment. Following the same
logic, we find that the fragments of this color class can be
arranged into precisely half of a square.

Finally, recall that vertex fragments are always sectors of a
square, and the sum of the interior angles of any polygon 
is (V – 2) x 180� = (V/2 – 1) x 360�. Hence, when added
together, the vertex fragments cover a square (V/2 – 1) times. 
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