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A typical first course on linear algebra is usually restricted to vector spaces over the
reals and the usual positive-definite inner product. Hence, the proof of the result

dim(S) + dim(S⊥) = dim(V)

is not presented in a way that is generalizable to non positive-definite inner products
or to to inner products on vector spaces over other fields. In [1], this author made
a case for proving this result in a way that does generalize to an arbitrary symmetric,
nonsingular, bilinear form for vector spaces over any field. He then went on to describe
just how that could be done.

The case is based on the fact that there are many useful inner products that
are not positive-definite: the usual inner product for linear codes over finite fields
〈(x1, x2, . . . , xn), (y1, y2, . . . , yn)〉 = ∑n

i=1 xi yi and the 4-dimensional real vector
space with the inner product of special relativity 〈(t, x, y, z), (t ′, x ′, y′, z′)〉 = t t ′ −
xx ′ − yy′ − zz′, to name two. The dimension theorem is still valid for arbitrary inner
products, but the usual proof will not work since the stronger condition S ⊕ S⊥ = V
may not hold. Unfortunately, the remedy proposed in [1] involves a rather extensive
alteration of the usual sequencing of the material in a typical first or second linear
algebra course. In this note, a much simpler adjustment is proposed. What follows is
an outline of the definitions and lemmas leading to a proof of the dimension theorem
in its full generality.

To start, we develop the necessary terminology including an extra definition. Given
a finite-dimensional vector space V over an arbitrary field, a function 〈v, w〉 mapping
the pairs of vectors into the scalars such that

(i) (symmetric) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V ,
(ii) (bilinear) 〈v, (αu + βw)〉 = α〈v, u〉 + β〈v, w〉, for all u, v, w ∈ V and all

scalars α, β,

is a symmetric bilinear form on V . If in addition,

(iii) (non-singular) 〈v, w〉 = 0, for all w, implies that v is the zero vector,
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the symmetric bilinear form is called an inner product for V . In an elementary course,
the field is the reals and the non-singular condition is replaced by

(iii′) (positive-definite) 〈v, v〉 > 0, for all non-zero vectors v.

The plan here is to show how the dimension theorem can be presented in a tradi-
tional course in a way that can be generalized to an arbitrary inner product over an
arbitrary field. To do this we prove as much of the dimension theorem as possible
without invoking (iii) or the positive-definite condition (iii′). Many standard results,
like Lemmas 1 and 2 below, use only (i) and (ii), and we have changed their state-
ments to reflect this.

For any symmetric bilinear form, we say v is orthogonal to w and write v ⊥ w

whenever 〈v, w〉 = 0.

Lemma 1. Consider a vector space with a symmetric bilinear form. If v is orthog-
onal to w1, . . . , wk , then v is orthogonal to every vector in the subspace spanned by
w1, . . . , wk .

Lemma 2. Consider a vector space V with a symmetric bilinear form, and let S be
any subspace of V . Then

S⊥ = {v : v ⊥ w, f or all w ∈ S} is also a subspace of V .

We need just one new lemma to prove the dimension theorem.

Lemma 3. Consider a vector space with a symmetric bilinear form and subspaces
S and T .

(i) If dim(S) > dim(T ), then S contains a nonzero vector that is orthogonal to
every vector in T .

(ii) If S contains no nonzero vector orthogonal to every vector in T and T contains
no nonzero vector orthogonal to every vector in S , then dim(S) = dim(T ).

Proof. Denote the bilinear form by 〈 , 〉. Let b1, . . . , bk be a basis for S and
d1, . . . , dh a basis for T , where k > h. Consider the h-tuples ti = (〈bi , d1〉, . . . ,

〈bi , dh〉), for i = 1, . . . , k. Since k > h, {t1, . . . , tk} is dependent and
∑k

i=1 αi ti =
(0, . . . , 0) for some set of scalars α1, . . . , αk not all of which are zero. But then
v = ∑k

i=1 αi bi is a nonzero vector of S , and one easily sees that

(〈v, d1〉, . . . , 〈v, dh〉) =
k∑

i=1

αi ti = (0, . . . , 0).

Thus v ⊥ d j , for j = 1, . . . , h, and v is a nonzero vector of S orthogonal to every
vector in T . Part (i) is proved, and Part (ii) follows.

Arbitrary symmetric bilinear forms may admit troublesome vectors of two types:
vectors orthogonal to every vector in the space and vectors orthogonal to themselves.
A vector v that is orthogonal to every vector in the space is called a null vector.
Clearly, the only null vector in an inner-product space is the zero vector. Also, the
only self-orthogonal vector in a positive-definite inner product space is the zero vec-
tor. However, nonzero null vectors and nonzero self-orthogonal vectors may exist for
an arbitrary symmetric bilinear form. Indeed, self-orthogonal vectors do exist in the
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spaces mentioned above corresponding to codes and special relativity. It is the exis-
tence of these two types of vectors that prevent one from extending the traditional
proof of the dimension theorem to the general case. To give a general proof, we simply
work around these troublesome vectors.

Theorem. Consider a vector space V with a symmetric bilinear form and let S be a
subspace that contains no nonzero null vector. Then

dim(S) + dim(S⊥) = dim(V).

Proof. Let b1, . . . , bk be a basis for S⊥, let b1, . . . , bn be an extension of that basis
for S⊥ to a basis for V , and let T be the subspace spanned by bk+1, . . . , bn . Clearly,
dim(T ) + dim(S⊥) = dim(V). We need only show that dim(S) = dim(T ).

Suppose that v ∈ T is orthogonal to every vector in S . Then v ∈ S⊥ ∩ T and,
therefore, must be the zero vector. Suppose that v ∈ S is orthogonal to every vector in
T . Then v ⊥ bi , for all i . Thus v is a null vector and, by hypothesis, must be the zero
vector. The result now follows by Part (ii) of Lemma 3.

Corollary. Consider a vector space V with an inner product. Then, for all subspaces
S of V:

(i) dim(S) + dim(S⊥) = dim(V),

(ii) (S⊥)⊥ = S.

And, if S contains no nonzero self-orthogonal vectors, in particular if the inner product
is positive definite,

(iii) S ⊕ S⊥ = V .

Proof. Part (i) follows at once from the theorem. To prove (ii), we note that S ⊆
(S⊥)⊥ and that, by the theorem,

dim(S) = dim(V) − dim(S⊥) = dim((S⊥)⊥).

Part (iii) follows from (i) and the observation that vectors in S ∩ S⊥ are self-
orthogonal.

Summary. A typical first course on linear algebra is usually restricted to vector spaces over
the real numbers and the usual positive-definite inner product. Hence, the proof that dim(S) +
dim(S⊥) = dim(V) is not presented in a way that generalizes to non-positive–definite inner
products or to vector spaces over other fields. In this note we give such a proof.
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