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Research Questions from Elementary Calculus
Jack E. Graver (jegraver@syr.edu) and Lawrence J. Lardy (ljlardy@syr.edu), Syracuse
University, Syracuse, NY 13244

Consider the following typical optimization problem from elementary calculus. A
farmer wishes to construct two identical rectangular enclosures by dividing a single
enclosure down the center. If the farmer has 120 feet of fencing, what are the dimen-
sions of the enclosures of maximum area that can be constructed? One easily checks
that the optimal enclosures are as in Figure 1.

Figure 1.

Each enclosure of this optimal solution has area of 15 × 20 = 300 square feet. If the
farmer wishes to construct two identical rectangular, 300 square foot enclosures side
by side while minimizing the length of fencing used, the optimal configuration is the
same. This represents a very general, but hardly new, observation about constrained
optimization: reversing the roles of the constraint and objective functions frequently
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results in a problem with the “same” solution. Well known or not, it should be proved.
And here, as in much research, finding the right level of generality and then properly
formulating the result are integral parts, perhaps the most important parts, of the re-
search. So, the first research problem in this research project is to formulate and prove
this “dual optimization” principle. We continue our discussion assuming that an ap-
propriate version of the dual optimization principle has been proved and simply refer
to a configuration like the one pictured above as the optimal configuration without
specifying which of the two optimization problems has been posed.

Referring to the above optimal configuration, we make a second observation: the
amount of east-west fencing equals the amount of north-south fencing. This is true of
the solutions to many such optimization problems. Consider the above problem but
suppose that less expensive fencing can be used to divide the larger rectangle and that
minimizing the cost to enclose a fixed area (or maximizing the area enclosed for a
fixed cost) is the object. In this case, the optimal solution will be such that the cost of
the east-west fencing equals the cost of the north-south fencing. For another example,
consider the problem of constructing a rectangular enclosure along the side of a barn
(see Figure 2). Assuming that the size of the enclosure is small relative to the side of
the barn, the optimal solution will have half the fencing parallel to the side of the barn
and half perpendicular to it. So we see that this “half and half” principle is valid in a
variety of settings. Again, finding the right level of generality and properly formulating
the result are essential parts of the project.

Figure 2.

Both of these principles have three-dimensional analogues which can be investi-
gated. For example, consider building a chest using inexpensive wood for the bottom
and back, moderately expensive wood for the sides and front, and expensive inlay for
the top. Then maximizing volume for a fixed cost or minimizing cost for a fixed vol-
ume will yield the same optimal configuration (i.e., the same ratios between width,
depth, and height) and that configuration will be the one in which the total cost for the
top and bottom equals the total cost of the two sides which, in turn, equals the total
cost of the front and back.

Later in this note we outline a proof of a limited formulation of these two principles.
However they are valid in rather general settings and the first of the research projects
we set forth is to state and prove these results at an appropriate level of generality:

Research Project 1. State and prove a general formulation of the dual optimiza-
tion principle and of the half and half principle.

We note that, once these two results have been stated and proved, virtually all standard
enclosure and box problems can be solved by a few simple algebraic steps.
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Returning to two dimensions, we pursue another line of inquiry. Reconsider the
problem of constructing two identical rectangular enclosures. If the basic structure is
not constrained by the condition that it be constructed by dividing a single enclosure
down the center, the solution remains the same but the problem is somewhat harder.
One must first prove that an optimal solution occurs only when the two enclosures
share a common side. The problem can be made even more interesting by requiring
only that the enclosures be rectangular and have the same area. Again, by dropping the
condition that the rectangles be congruent, the problem becomes a bit harder but the
solution remains the same.

Increasing the number of rectangles leads to two very interesting collections of
problems.

Problem Cn. Find the optimal configuration for n congruent rectangular enclosures.

Problem An. Find the optimal configuration for n rectangular enclosures of equal
area.

Research Project 2. Investigate the solutions to the problems Cn and An for all n.

To give the reader a taste of this project, we sketch the solutions to Cn and An

for n = 2 and n = 3. Investigating these problems will be greatly facilitated by the
two principles described in Research Project 1 and we start this investigation by prov-
ing somewhat limited formulations of these principles. Suppose a configuration of n,
x × y rectangles all with the same orientation has been selected. Problem Cn for this
configuration can be formulated as:

Maximize a = xy subject to r x + sy = f, or

Minimize f = r x + sy subject to xy = a,

where x and y are the dimensions of the congruent rectangular enclosures, r and s
are constants which depend on the configuration, f is a fixed length of fencing and a
the area or a is a fixed area and f is the length of fencing needed. In either case, the
constraint equation permits us to think of y as a function of x . If we differentiate both
equations with respect to x , we get

d f

dx
= r + s

dy

dx
and

da

dx
= y + x

dy

dx
.

Maximizing a for fixed f , we have d f
dx = 0 and set da

dx = 0; minimizing f for fixed a,
we have da

dx = 0 and set d f
dx = 0. In either case, x and y must satisfy the system

r + s
dy

dx
= 0 and y + x

dy

dx
= 0.

From this we conclude that, for each problem, the optimal configuration satisfies r x =
sy. Thus, we have verified both principles for a special case of the problem Cn, the case
when all enclosures have the same orientation. Actually, the half and half principle
need not hold for the general Cn problem but the dual optimization does hold for the
general Cn problem. Assuming the dual optimization principle, we can restrict our
investigation of problem Cn to a standard form: Minimize the total amount of fencing
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needed to construct n congruent rectangular enclosures each with an area of one square
unit. For each possible configuration, we must

Minimize r x + sy subject to xy = 1

and then select the configuration with the smallest minimum. By the half and half
principle, the minimum will occur when r x = sy. Thus r x = s 1

x , x =
√

s√
r
, y =

√
r√
s

and f = r x + sy has a minimum of 2
√

rs. Armed with this information, the problem
becomes a combinatorial/geometric problem of finding the configuration for which
2
√

rs has its smallest value.
The discerning reader will have noted that we have made some basic assumptions

about the optimal solutions to Cn. First, we have assumed that all optimal configura-
tions for Cn satisfy the condition that the sides of all rectangles are parallel to one of
the axes of a fixed pair of orthogonal axes. Early in any investigation one would want
to prove this for both Cn and An. Second, it is easy to see that the constraint function
has the form r x + sy when at least one optimal configuration for Cn has all of its rect-
angles oriented in the same direction. One must show that the constraint function has
this form even if some of the rectangles are “on their sides.”

Moving on and assuming that our two principles hold for problem An, we reformu-
late problem A2 in the standard format: minimize the fencing needed to enclose two
rectangles of area 1 square unit each. Clearly, in the optimal configuration, the two
rectangles will share one complete side of one of the rectangles:

The left hand figure represents the general configuration and the right hand figures
represent the two symmetric configurations constructed by reflecting each of the rect-
angles, in turn, about the common side. One easily checks that the average of the
amount of fencing used in the two right hand figures is less than the amount of fencing
used in the left hand figure. Thus, we may conclude that the optimal configuration will
be symmetric about a common side and that the solution to problem A2 is the solu-
tion to problem C2. Labeling the central figure, we have that the amount of fencing is
f = 4x + 3y; so y = 2√

3
, x =

√
3

2 , and f = 4
√

3.
We note that, in general, if an optimal configuration for An consists of congruent

rectangles, then it is also an optimal configuration for Cn. Turning to problem A3, there
are two basic configurations, three in a row or three in a cluster:
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Using a sequence of symmetry arguments on pairs of enclosures, we can show that the
three or two enclosures in a row must be congruent:

In the three in a row case, we have f = 4y + 6x and conclude that the optimal
dimensions for this configuration are y =

√
6

2 =
√

3√
2
, x = 2√

6
=

√
2√
3

and f = 2
√

24 =
4
√

6. Turning to the cluster configuration, we first minimize the amount of fencing
needed for the two identical enclosures. But that is simply the solution to A2: y = 2√

3
,

x =
√

3
2 and f = 4

√
3. We now treat the third enclosure as if it were “built on the

side of a barn.” We have f̃ = x̃ + 2ỹ; so ỹ = 1√
2
, x̃ = √

2, and f̃ = 2
√

2. So the

total fencing needed for the right hand configuration is f + f̃ = 4
√

3 + 2
√

2, which
is slightly less than 4

√
6 (9.757 vs. 9.798).

The left hand configuration is a solution to problem C3 while the right hand config-
uration (the optimal solution to A3) is not. Before we can conclude that the left hand
configuration is the optimal solution to problem C3, must consider the cluster config-
uration with the additional condition that all three rectangles are congruent. This leads
to two cases: x̃ = x and ỹ = y or x̃ = y and ỹ = x . In the first case, the total amount of
fencing is f = 5x + 5y and the optimal solution for this configuration has x = y = 1
and f = 10. In the second case, the total amount of fencing is f = 6x + 4y and the
optimal solution for this configuration is the same as the three in a row configuration.
Thus, there are many optimal configurations for problem C3, all of which involve three√

3√
2
×

√
2√
3

rectangles. In one case, they are in a row and, in the others, one end rectangle
is removed and repositioned to form a cluster.

Moving on to n = 4, it is not surprising that problems C4 and A4 have a common
solution, the 2 × 2 grid of unit squares. In fact, a natural conjecture is that, when
n = m2, problems Cn and An have a common solution in the m × m grid of unit
squares. Proving this result might be a good place to start an attack on the general Cn

and An problems.
There is one last natural extension of the An we wish to consider. Let the real num-

bers r1 ≥ r2 ≥ · · · ≥ rn > 0 be given such that r1 + r2 + · · · + rn = 1. Maximize the
total area a that can be divided into n rectangular regions of areas ri a, for i = 1, . . . , n,
by a fixed amount of fencing. Or, given a fixed area a, minimize the amount of fencing
needed to enclose n rectangular regions of areas ri a, for i = 1, . . . , n. Assuming that
the dual optimization principle holds in this case, we denote this last formulation with
a = 1 as the Rn problem. To illustrate this class of problems, we consider R2.

To facilitate our discussion of R2, we prove a variation on the “half and half” prin-
ciple. Suppose we wish to minimize f = a1x1 + b1 y1 + a2x2 + b2 y2, where xi yi = ri .
Completing the square, we see that ai xi + bi yi = (

√
ai xi − √

bi yi)
2 + √

ai biri and
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f =
(√

a1x1 − √
b1 y1

)2 +
(√

a2x2 − √
b2 y2

)2 + √
a1b1r1 + √

a2b2r2.

Thus, f is minimized when a1x1 = b1 y1 and a2x2 = b2 y2.
Now suppose that we have an optimal solution to R2. Clearly the two enclosures

must share an entire side of one of them. Assuming that the dimensions of the enclo-
sures are x1 by y1 and x2 by y2 and that the shared side is one in the y direction, we have
that the amount of fencing to be minimized is f = 2x1 + 2x2 + y1 + y2 + max{y1, y2},
where x1 y1 = r1 and x2 y2 = r2. If y1 < y2, the minimum occurs when y1 = 2x1 and
2y2 = 2x2 or y1 = √

2r1 and y2 = √
r2. But, this minimum is in the given region only

if r1 <
r2
2 . Under our assumption (r1 ≥ r2), the minimum does not occur when y1 < y2.

However, reversing the subscripts, we see that the minimum does occur at y1 = √
r1

and y2 = √
2r2 when r2 <

r1
2 . In the case that 1

2 ≥ r2 ≥ r1
2 , the minimum must occur

when y1 = y2. In this case, we have a one parameter problem, see Figure 3. By the

“half and half” principle: 3y = 2(
r1
y + r2

y ) = 2
y ; giving y =

√
2
3 .

Figure 3.

Research Project 3. Investigate the solutions to the problems Rn.

One might think of problem Rn as the rectilinear version of the two-dimensional soap
film problem.

We close this note by observing that all of these research projects have interesting
and challenging three-dimensional analogues.
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