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Jack E. Graver and Lawrence J. Lardy

Introduction. Both linear functions and rounding functions (!x", round
down; #x$, round up; ‖x‖ = !x+.5", round to nearest integer) would likely be
on anyone’s list of the easiest functions to understand and use. Nevertheless
when they are combined, surprising results and challenging problems arise,
as we illustrate in this note.

Tax-Included Prices. Suppose that in the area where you live there is
a 5% sales tax. Suppose further that you are selling souvenir jackets outside
of a sporting event where it is difficult to make small change. So, you wish to
advertise a price that includes tax and is an even dollar amount. Since your
initial plan was to sell the jackets for $18 each ($18.90 with tax), you settle
on $19 as the ideal tax-included selling price. Let p denote the price before
tax. You wish to solve 1.05p = 19.00 for p. We have 19.00

1.05 = 18.09523..; so
$18.10 seems a reasonable choice for p. However, (1.05)18.10 = 19.005 which
rounds to 19.01 while (1.05)18.09 rounds to $18.99. Evidently $19 is not a
possible tax-included price!

A good place to start an investigation of rounded linear functions is with
the problem: Given a t% sales tax find a formula for all amounts which
can (or cannot) be tax-included prices. It will be helpful to reformulate the
problem. Let n ∈ N (N, the set of nonnegative integers) denote the price
in cents. Assuming the tax t is given by a terminating decimal, 1 + .01t is a
rational number, p

q . The tax-included prices are those integers in the image
of the function f : N → N, where f(n) = ‖p

qn‖. The integers which are
not tax-included prices are those in the complement of this image in N. Our
reformulated problem:

1. For positive integers describe the image of f and its complement where
f : N → N is given by f(n) = ‖p

qn‖

Solving this problem should give a good understanding of how rounded
linear functions work and prepare for an investigation of the more compli-
cated problems that follow.

Currency Exchange Rates. Another collection of rounded linear func-
tions are the functions used to exchange one currency for another. Again, we
will think of the functions involved in currency exchange as functions from
N into N where the input variable is an integer amount of the smallest coin
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denomination of the first currency (cents, in the case of US currency) while
the output is an integer amount of the smallest coin denomination of the
second currency. But, here we will always round down to the nearest integer.
For example on October 6, 1999 the exchange rate from US to Canadian cur-
rency was one US cent for 1.4718 Canadian cents. We can write this currency
exchange function as E(n) = !(1.4718)n". We define the general currency
exchange function, Er(n), to be !rn" where r is the rate of exchange. From
an exchange function, one can construct a table of exchange values. The
exchange rate just given yields the following table.

U.S. Cents 1 2 3 4 5 10 100 1000 10000
Can. Cents 1 2 4 5 7 14 147 1471 14718

Of course, a finite exchange table is only a partial view of an exchange func-
tion. The question we pose for investigation arises with the next table, which
comes from a problem in a popular textbook where it is described as a table
for converting US currency into German marks. The problem in the text is
to find the exchange rate that gives the table.

Cents 500 1000 1500 2000 2500
Marks 1220 2440 3659 4879 6098

When this was assigned as a homework problem, most students concluded
the rate was r = 2.44, which nearly works and agrees with the answer in the
instructor’s manual. However, one student looked into the problem more
deeply, pointing out not only that r = 2.44 does not work but also that there
is no rate that will give this table. To see this, note that from the second
column 2440 ≤ 1000r < 2441 or 2.44 ≤ r < 2.441, while from the third
column, 2.4393 ≤ r < 2.44. This might have been chalked up as a misprint
in the problem and dropped, except that, the next day the same student
observed that there is a rate, namely s = 0.41, for converting marks to cents
which does give the entire table! This “one-way” table illustrates that our
intuition can be in error. We might assume that, if s is a rate of exchange
from marks to dollars, then 1

s is an exchange rate from dollars to marks and
that “one-way” tables do not exist. Of course, 1

s = 1
0.41 = 2.43902439 almost

works, and the problem is due to the rounding operation. Giving a precise
explanation of this rather simple phenomenon requires some careful thought.

For our analysis, we will write currency exchange tables in the following
form:
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Currency M m1 m2 m3 m4 · · · mk

Currency N n1 n2 n3 n4 · · · nk

Exchange functions are non-decreasing, and we assume that in an exchange
table both currency values are strictly increasing, i.e., m1 < m2 < · · · < mk

and n1 < n2 < · · · < nk. Any table of non-negative integers that satisfies
these conditions will be called an exchange-type table. If it can be given
by a rate of exchange function from currency M to currency N , we will call
that rate of exchange an (M → N)-rate; similarly, if it is given by a rate of
exchange function from currency N to currency M , we will call that rate an
(N → M)-rate. An exchange-type table which is given by an (M → N)-rate
and an (N → M)-rate is called a two-way table, one given by an (M → N)-
rate but not a (N → M)-rate (or visa-versa) is called a one-way table and a
table for which there is neither an (M → N)-rate nor an (N → M)-rate is
called a no-way table.

It should be clear that any attack on the problem of one-way tables must
be grounded on a good understanding of exchange functions. With this in
mind we have arranged our research questions in three groups: First, some
fundamental questions about exchange functions. Second, questions about
exchange tables. And third, a single question, which the proposers have not
completely solved, designed to lead the investigator into some of the deeper
properties of exchange functions. While in practice all exchange rates are
rational, the problems become more challenging if all positive real rates are
considered.

Basic properties of exchange functions.

2. For what rates r is Er(m) one-to-one?

3. For what rates r is Er(m) onto?

4. For what rates r and s is Er(m) = Es(m) for all m?

5. For what rates r and s is (Er ◦ Es)(m) = m for all m?

Properties of exchange tables.

6. Let T denote an exchange type table and consider its subtables (obtained
by keeping some columns and deleting others).
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(a) Describe all M → N exchange rates for a 1-column subtable.

(b) Describe all M → N exchange rates for a 2-column subtable.

(c) Explain how a 2-column subtable may, or may not, admit an M →
N exchange rate.

(d) Describe all M → N exchange rates for a k-column table.

(e) Is the U.S. cents to Canadian cents table one-way or two-way?

7. Suppose that we have an exchange-type table with k columns. Suppose
further that each of the

(
k
2

)
, 2-column subtables is given by an M → N

exchange rate. Must it follow that the entire table has an M → N
exchange rate?

8. (a) Explain all 2-column one-way tables.

(b) Explain all one-way tables.

Further properties of exchange functions.

9. For what rates r and s is there a rate t such that (Er ◦Es)(m) = Et(m),
for all m?

Batting Averages We introduce another surprising result involving lin-
ear functions and rounding with another problem from a textbook:

A baseball player comes to bat. If he gets a hit, his batting average will be
.195 and, if he does not get a hit, it will be .190. Find how many times he
has been at bat, how many hits he has had, and his present batting average.

To simplify our notation, we will express batting averages as three-digit whole
numbers. If b stands for the number of times a player has been at bat and
h for the number of hits the player has had, the player’s batting average,
expressed as a three-digit integer, is

∥∥∥∥∥1000

(
h

b

)∥∥∥∥∥ .

Here the round-off seems negligible compared with size of the numbers in-
volved. So we will first attempt to solve the problem by ignoring the rounding
function and solving the equations

1000

(
h

b + 1

)

= 190 and 1000

(
h + 1

b + 1

)

= 195.
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The solution b = 199 and h = 38, checks:

1000
38

199 + 1
= 190 and 1000

38 + 1

199 + 1
= 195,

with no rounding needed. The player’s present batting average is:
∥∥∥∥1000

(
38

199

)∥∥∥∥ = ‖190.9547..‖ = 191.

Now let’s consider a more realistic problem – one in which the the numbers
don’t work out so nicely. Suppose that, if our player gets a hit, his batting
average will be 325 and, if he does not get a hit, it will be 319. Our system
of equations is

∥∥∥∥∥1000

(
h

b + 1

)∥∥∥∥∥ = 319 and

∥∥∥∥∥1000

(
h + 1

b + 1

)∥∥∥∥∥ = 325.

Solving this system without rounding yields b = 165.6 and h = 53.16:

1000
531

6

1652
3 + 1

= 319 and 1000
531

6 + 1

1652
3 + 1

= 325.

But, b and h must be integers and the obvious choices are b = 166 and h = 53.
However, these values do not check: 1000 53

166+1 rounds to 317 and 1000 53+1
166+1

rounds to 323, not the required 319 and 325. On the other hand, the natural
second choice b = 165 and h = 53 does check: 1000 53

165+1 = 319.277108.. and
1000 53+1

165+1 = 325.301204... Assuming this is the correct answer we compute
his present average to be 1000 53

165 = 321.21 or 321. This all seems very reason-
able until we look up the records to find that our player has actually had 61
hits in 190 times to bat! 1000 61

190+1 = 319.3717.. and 1000 61+1
190+1 = 324.6073...

This is rather unsettling particularly since this solution is very different from
the exact solution to the system. Could there be other solutions? Can we
even trust the answer to the textbook problem which worked out so nicely?

This leads to several more research questions:

10. How many solutions can the batting averages problem have and how can
we find them all?

Returning to our second example, note that the present batting average
computed from the incorrect solution was 321 and the player’s actual present
batting average is ‖1000 51

159‖ = 321 also. Is this just luck or
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11. Will the present batting average be the same for all solutions?

We close with a question designed to lead the investigator into some of
the deeper properties of the functions involved.

12. Letting b,h,T and t be continuous variables, investigate the transfor-
mation from the b,h-plane into the T,t-plane given by the system of
equations:

t = 1000
h

b + 1
and T = 1000

h + 1

b + 1
.

Also investigate its inverse. In particular, consider just how straight
lines are mapped by these transformations. Discuss the solutions to the
previous problems in the context of these transformations. Among other
things, you should be able to estimate the expected number of solutions
to a problem as a function of t and T .
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