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Abstract A Kekulé structure of a benzenoid or a fullerene � is a set of edges K such
that each vertex of � is incident with exactly one edge in K . The set of faces in � that
have exactly three edges in K are called the benzene faces of K . The Fries number
of � is the maximum number of benzene faces over all possible Kekulé structures for
�. The Clar number is the maximum number of independent benzene faces over all
possible Kekulé structures for �. It is often assumed, but never proved, that some set
of independent benzene faces giving the Clar number is a subset of a set of benzene
faces giving the Fries number. In Hartung (The Clar structure of fullerenes, Ph.D.
Dissertation. Syracuse University, 2012) it is shown that this assumption is false for
a large class of fullerenes. In this paper, we prove that this assumption is valid for a
large a class of benzenoids.
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1 Introduction

A benzenoid � = (V, E, F) is a plane graph with one distinguished face called the
outside face and with all other faces hexagonal; in addition, we require that all vertices
have degree 2 or 3 and all vertices of degree 2 bound the outside face. Benzenoids
are also called hexagonal patches, benzenoid hydrocarbons, graphite patches and
graphene patches in the literature.

By the boundary of the benzenoid � we mean the boundary of the outside face.
Given a benzenoid we may project it onto �, the hexagonal tessellation of the plane,
by simply tracing its boundary in �. Thus we may envision our benzenoid as a region
(perhaps self-overlapping) of � and as such it inherits the unique 3-coloring of the
faces of � (up to a permutation of the colors). By the boundary of a hexagonal face of
� we mean the set of vertices and edges it shares with the outside face. The hexagonal
faces that have non-empty boundaries are called boundary faces. If f is a boundary
face, its boundary consists of one or more simple paths called the boundary segments
of �. We denote by H the class of benzenoids for which the boundary is an elementary
circuit and all boundary segments have odd length.

Lemma 1 A benzenoid � is in H if and only if all boundary faces belong to two of
the face color classes.

Proof Let f0, f1, . . . , fk = f0 denote the boundary faces of � listed in clockwise
order. Since the coloring of the faces of � is induced by the face 3-coloring of �, fi−1
and fi+1 will be assigned the same color if and only if the boundary segment of fi

separating them has odd length. Hence if � ∈ H all faces with even indices will be
assigned the same color and all faces with odd indices will be assigned the same color.
Conversely, if the face colors alternate between two colors, all boundary segments will
have odd length. ��

In view of this lemma, we fix the color classes of the faces for the benzenoids
in H. For � ∈ H we choose red for the color class of faces that do not lie on the
boundary; we choose blue for the largest of the remaining color classes and yellow for
the third color class; we denote these face color classes by R, B and Y, respectively.
The central edges on the boundary segments of length 3 and the second and fourth
edges on the boundary segments of length 5 are called the exposed edges. We let
�B denote the number of exposed edges on blue boundary faces and �Y denote the
number of exposed edges on yellow boundary faces. Finally, let n denote the total
length of the boundary. We have computed all of these parameters for the benzenoid
in Fig. 1.

Using |V |, �b and �y as our basic parameters, we have:

Theorem 1 Let � = (V, E, F) belong to H. Then

|E | = 3

2
|V | − (�B + �Y ), |F | = 1

2
|V | + 2 − (�B + �Y ), n = 4(�B + �Y ) − 6,

|B| = 1

6
|V | − 1

3
�Y , |Y | = 1

6
|V | − 1

3
�B, and |R| = 1

6
|V | − 2

3
(�B + �Y ) + 1.
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Fig. 1 A simple example

Proof � has exactly 2(�B+�Y )vertices of degree 2 on its boundary, all of the remaining
vertices have degree 3. Hence the sum of the vertex degrees is 3[|V | − 2(�B + �Y )] +
4(�B + �Y ) giving 2|E | = 3|V | − 2(�B + �Y ) and the first equation above.

There are |F |− 1 faces of degree 6 and one of degree n. Summing the face degrees
and adding 2(�B + �Y ) counts each vertex three times giving:

6(|F | − 1) + n + 2(�B + �Y ) = 3|V | or |F | = 1

2
|V | − n

6
− 1

3
(�B + �Y ) + 1.

Then by Euler’s formula,

|V | −
[

3

2
|V | − (�B + �Y )

]
+

[
1

2
|V | − n

6
− 1

3
(�B + �Y ) + 1

]
= 2,

which when simplified gives the formula for n above.
Now each blue face covers 6 vertices and the only vertices not covered by the

blue faces are covered by exposed yellow edges. Hence 6|B| + 2�Y = |V |, giving
the formula for |B|; the formula for |Y | is computed in the same way. Each red face
covers 6 vertices and the only vertices not covered by the red faces are the n vertices
on the boundary: 6|R| + n = |V |. Using the previously computed formula for n and
solving for |R| gives the last formula listed. Finally, |F | = |B| + |Y | + |R| + 1 gives
the formula for |F |. ��

A fullerene � = (V, E, F) is a trivalent plane graph with hexagonal and pentagonal
faces. A Kekulé structure (or perfect matching) K ⊆ E of a benzenoid or a fullerene
� is a set of edges such that each vertex is incident with exactly one edge in K . In
Fig. 1, the thick edges form a Kekulé structure. Given a Kekulé structure on �, a face
of � may have 0, 1, 2 or 3 of its bounding edges in �. The set of faces that have exactly
i of their edges in K is denoted Bi (K ). The faces in B0(K ) are called the void faces of
K , the faces in B3(K ) are called the benzene faces of K . (In the chemical literature,
benzene faces are often called conjugated 6-circuits. See [2].) In our example, B1(K )

and B2(K ) are empty; B0(K ) = R and B3(K ) = B ∪ Y . It should be noted that
a benzenoid may have an odd number of vertices and hence cannot have a Kekulé
structure and noted further that those benzenoids that do admit a Kekulé structure

123



1984 J Math Chem (2013) 51:1981–1989

usually have many of them. We soon verify that all of the benzenoids in H admit
Kekulé structures.

The Fries number of a benzenoid or a fullerene � is the maximum number of
benzene faces over all possible Kekulé structures for � and is denoted by φ(�). A set
of φ(�) benzene faces in some Kekulé structure in � is called a Fries set. With the
given Kekulé structure, our example has 39 benzene faces. Hence the Fries number of
this benzenoid is at least 39; in the next section we prove that it actually is 39 for this
example.

The Clar number of a benzenoid or a fullerene � is the maximum number of
independent benzene faces over all possible Kekulé structures for � and is denoted
by γ (�). An independent set of γ (�) benzene faces in � is called a Clar set. In any
benzenoid, a color class is an independent set of faces. So in our example, both B and
Y are independent sets of benzene faces; hence γ ≥ 20. However, in this case we can
do better by choosing the 11 leftmost blue faces and the 10 rightmost yellow faces
giving γ ≥ 21. In Sect. 3, we show that the Clar number of this example is in fact 21.

In our example, the Clar set just described is a subset of the Fries set, B ∪ Y . It
has generally been assumed that for any benzenoid or fullerene, some Clar set is a
subset of some Fries set, or equivalently that there always exists a Kekulé structure
that simultaneously gives the Fries and Clar numbers. Hartung [1] described a class of
fullerenes for which this assumption is false. In this paper, we prove that the assumption
is valid for all benzenoids in H.

2 The Fries number

Lemma 2 Let � = (V, E, F) be a benzenoid that admits a Kekulé structure K . Let
Kb denote the number of edges of K on the boundary of �. Then

|B3(K )| = |V |
3

− |B1(K )| + 2|B2(K )| + |Kb|
3

, (1)

and if � ∈ H, then

φ(�) ≤ |V |
3

− �B + �Y

3
. (2)

Proof The sum 3|B3(K )|+2|B2(K )|+ |B1(K )|+ |Kb| counts each edge in K twice.
Setting the sum equal to |V | = 2|K | and solving for |B3(K )| gives formula (1). Thus
� attains its Fries number when |B1(K )| + 2|B2(K )| + |Kb| is minimized. We note
that the edges in K that match a vertex of degree 2 to another vertex must belong
to Kb. For � ∈ H, the number of degree 2 vertices is 2(�B + �Y ) and |Kb| ≥ �B + �Y .
Therefore, |B1(K )| + 2|B2(K )| + |Kb| ≥ �B + �Y which combined with (1) gives
(2). ��
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Theorem 2 For a benzenoid in H the unique Fries set is B ∪ Y , the union of the two
color classes that appear on the boundary, and

φ(�) = |V |
3

− �B + �Y

3
.

Proof We must construct a Kekulé structure in which B1(K ) = B2(K ) = 0 and
Kb = �B + �Y . This is achieved by taking K to be the edges incident with both a blue
and a yellow face plus the exposed edges. One easily checks that with this Kekulé
structure each blue and yellow face is a benzene face and each red face is void. Hence,
B1(K ) = B2(K ) = 0. Furthermore the only boundary faces in this Kekulé structure
are the exposed edges, so Kb = �B + �Y .

To see that this Kekulé structure is unique in attaining this bound we note that to
achieve this bound we must have B1(K ) = B2(K ) = 0 and Kb = �B + �Y . These
conditions imply that all boundary faces are benzene faces. The condition B1(K ) =
B2(K ) = 0 also implies that if three faces have a common vertex two are benzene
faces and one is void. We note that if f is a red face adjacent to a boundary face, it
shares a vertex with two boundary faces and must be void. But then all of the blue
and yellow faces adjacent to f must be benzene faces. Thus working inward from the
boundary we see that all red faces are void and all blue and yellow faces are benzene
faces. ��

3 The Clar number

Define a vertex covering (C, A) of a plane graph � to be a set of faces C and edges
A such that all vertices of � are incident with exactly one element of the covering.
Recall that the Clar number, γ (�), of a benzenoid or fullerene � = (V, E, F) is the
maximum set of independent benzene faces over all Kekulé structures for �. Let K be
a Kekulé structure for �. If C is an independent set of benzene faces with respect to
K and A is the set of edges in K that are not incident with faces in C , then (C, A) is a
vertex covering. We use the term Clar structure for vertex coverings obtained in this
way from a Kekulé structure. In [1], the following result was proved for fullerenes:

Lemma 3 Let � = (V, E, F) be a fullerene or a benzenoid with a vertex covering
(C, A). Then (C, A) is a Clar structure for some Kekulé structure of �. Furthermore,

|C | = |V |
6

− |A|
3

. (3)

This result also holds for benzenoids as the proof below from [1] is valid in that
setting too.

Proof First, we may simply select three alternating edges around each face in C . Those
edges plus the edges in A form a Kekulé structure for �. Next note that every face in C
contains 6 vertices and every edge in A contains 2 vertices and that every vertex of �

is incident with exactly one element of the vertex covering. Hence 6|C |+2|A| = |V |,
and solving for |C | gives the equation. ��
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Fig. 2 Possible couplings

Hence a benzenoid attains its Clar number with a vertex covering (C, A) that
minimizes |A|. Let � ∈ H. We proved in the last section that the Fries set for � is the
union of the two color classes that appear on the boundary. Since each color class is
independent, one good choice for the Clar set is the larger of these two color classes,
the blue faces. The Clar structure corresponding to the blue faces is (B, EY ) where EY

is the set of exposed yellow edges and, as we have already shown, |B| = 1
6 |V |− 1

3�Y .

This is an easily computed lower bound but, as we saw with our basic example,
the actual value could be larger. The key concept needed to understand when and how
we can improve on this bound is that of “Clar chains.” Clar chains were introduced
in [1] and used there to produce fullerenes with no Kekulé structure that gives both
the Fries and Clar numbers. Since properties of Clar chains are worked out in detail
in that paper, we only discuss those properties relevant for the benzenoids in H and
some of the proofs are only sketched here, referring to [1] for the details.

Given a Clar structure (C, A) let A∗ denote those edges in A that do not lie on the
boundary. We say that an edge e ∈ A∗ exits a face f if e and f share exactly one
vertex. If f ∈ C , no edge of A∗ exits f ; if f is any other hexagonal face, 0, 2, 4 or
6 edges of A∗ exit f depending on whether f shares 3, 2, 1 or 0 edges with faces
in C . In [1], it was shown that the edges exiting a hexagonal face f may be coupled
by segments across that face so that coupled edges either exit by adjacent vertices or
exit directly across from one another and that the coupling segments never cross. The
six possible coupling schemes for a face are pictured in Fig. 2.

Now construct a simple auxiliary graph with vertex set V , the edges in A∗ and
edges corresponding to the coupling segments joining endpoints of edges in A∗ across
hexagonal faces. In this graph, the vertices on the faces in C have degree 0; vertices
that lie on the boundary and are endpoints of edges in A∗ have degree 1; the remaining
endpoints of edges in A∗ have degree 2. Hence this auxiliary graph consists of isolated
vertices, paths that join one vertex on the boundary to another vertex on the boundary
and circuits. Given a path, consider the sequence f0, e1, f1, e2, . . . , ek, fk−1, ek, fk

where f0 = fk is the outside face, the ei are the edges of the path in A∗ and fi is
the face that contains coupling segment joining ei to ei+1. This sequence of faces and
edges is called an open Clar chain. Circuits are also represented by such sequences
where f0 = fk is not the outside face and and the end points of ek and e1 are coupled
across f0; these are called closed Clar chains.

Lemma 4 Let� ∈ H, let (C, A)be a Clar structure for� and let f0, e1, f1, e2, . . . , ek,

fk, ek+1 be a Clar chain. Then all of the faces on the chain are in the same color class
(red if it is an open chain). Furthermore when traversing the chain, all of the faces
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Fig. 3 Clar chains

adjacent to the ei on the right are in a second color class and all of the faces adjacent
to the ei on the left are in the third color class.

Proof Since � ∈ H we may extend the face 3-coloring to include the outside face
colored red. For the rest of this proof refer to Fig. 3. Since di , gi and fi share a common
vertex, they are assigned different colors. Now the six faces around fi alternate in the
colors of di and gi . If the chain makes a sharp right turn, gi+1 = gi and di+1 is
assigned the same color as di . The same argument holds for a sharp left turn. If ei+1
exits opposite from ei , gi+1 is separated by one face from gi and hence is assigned
the same color as gi ; similarly di+1 is assigned the same color as di . Since fi−1 shares
a vertex with both di and gi its color must be different from the colors assigned to di

and gi ; the same is true of fi . Hence fi−1 and fi must be assigned the same color.
Inductively then all of the fi are in one color class, all of the di in a second color class
and all of the gi in the third color class. ��
Lemma 5 Let � ∈ H, let C be a Clar set and let (C, A) be the corresponding Clar
structure for �. Then there are no closed chains in the chain decomposition given by
(C, A).

Proof Suppose that e1, f1, e2, . . . , ek, fk, e1 is a Clar circuit for the Clar structure
(C, A). We may assume that the inside of the circuit is on the right as we traverse it by
increasing the indices. Using the notation pictured in Fig. 3, let g1, . . . gk denote the
faces on the inside and incident with the ei . Delete from C all faces that lie inside the
circuit to get C ′ and delete from A all of the edges of the chain and any other edges of A
that are inside this circuit to get A′. Note that (C ′, A′) is a vertex cover for all vertices
outside the circuit. Now let G denote all of the faces inside the circuit of the same
color as the gi . Since every vertex inside the circuit and every endpoint of an ei meets
a face of this color, (C ′ ∪ G, A′) is a vertex cover. Since |A′| < |A|, |C ′ ∪ G| > |C |,
contradicting the fact that C is a Clar set. ��

4 Clar and Fries sets

The following is a restatement of Theorem 2–5 from [3]:

Theorem (Saaty and Kainen) Every trivalent, bipartite plane map admits a unique
face three-coloring.
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Fig. 4 Using Clar chains

We now have all of the tools in place to prove our main result:

Theorem 3 Let � ∈ H. Then every Clar set for � is a subset of the Fries set of �.

Proof Let � ∈ H, C be a Clar set and let (C, A) be the corresponding Clar structure.
We construct another auxiliary graph called the expansion of (C, A) and denote it
by E(C, A). This is a slight variation on the expansion as defined in [1]. First each
boundary path of length 3 or 5 is replaced by a single edge. The faces they bound
(including some faces in C) now have degree 2 or 4. The Kekulé structure K is also
modified along the altered boundary paths. First we note that given a boundary path
of length 3 or 5 the vertices of degree 2 can be covered only if all of the exposed
edges belong to K or if all of the nonexposed edges on the path belong to K . If the
exposed edges of a path are in K , the replacement edge does not belong to K ′; if the
nonexposed edges of a path are in K , the replacement edge is included in K ′. One
easily checks that this modification K ′ of K is a perfect matching for the modified
graph and that the corresponding modification (C ′, A′) of (C, A) is still a vertex cover.
Note that none of the edges in A∗ have been deleted or replaced. The next step in this
construction is to “split” the edges in A∗ and expand each one into a new square face.
The hexagonal faces along a Clar chain are each expanded to octagons or to a face
of degree 2m + 6 if m chains pass through it. If we let A∗ denote the square faces,
(C ∪ A∗) is now a face-only vertex covering of E(C, A).

This construction is illustrated in Fig. 4. The Clar structure (C, A) that we start with
takes the set of 21 faces indicated by circles in the left most patch. The 5 edges in A
are the 2 edges of the Clar chain across the center plus the exposed edge of the yellow
face in the upper left corner and the 2 exposed edges of the blue faces in the lower left
and right corners. Ignoring the face 3-coloring, E(C, A) is pictured in the center with
its modified Kekulé structure K ′.

One easily sees that this construction yields a E(C, A) that is bipartite and triva-
lent. Hence we may apply the Saaty–Kainen Theorem to get a face 3-coloring of
E(C, A). Since this coloring is unique and the color classes are the only face-only
vertex coverings, (C ∪ A∗) is a color class (in our example, the blue color class).
We use red for the color class of E(C, A) containing the outside face, and yellow
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for the third color class. Finally, shrinking the faces in A∗ back to the edges in A∗
and reinstalling the length-3 and length-5 paths on the boundary, we are back to �

(on the right in the figure) with an improper face 3-coloring: the coloring is a proper
face coloring everywhere except that faces sharing an edge from A∗ have the same
color (yellow in the figure). Here the blue faces are the Clar set. Since the red faces
belong to the color class of the outside face, they remain the same in both colorings.
In the improper coloring, the blue and yellow faces have been interchanged in the
bottom half.

In general the Clar chains from the Clar structure (C, A) for the benzenoid �

partition � into regions. The improper face 3-coloring given by the expansion E(C, A)

maintains the red color class and reverses the blue and yellow faces in alternate regions.
Hence C is always a subset of the Fries set B ∪ Y . ��

Returning to our example, can we be certain that the Clar structure that we started
with actually achieved the Clar number, i.e. that 21 is indeed the Clar number, not just
another lower bound? Note that for the Clar structure (B, Y ∗), |B| = 20 and |Y ∗| = 8
and for the Clar structure (C, A) we just constructed |C | = 21 & |A| = 5. It follows
from Eq. 3 that increasing |C | by 1 decreases |A| by 3. So for any improvement on
21, we would need a Clar structure (C, A) with |A| = 2. That would require a Clar
chain of length 1 or a Clar chain of length 2 that completely separates the blue and
yellow exposed edges. One easily checks that a Clar structure with such a Clar chain
does not exist.
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