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ABSTRACT. In this paper, we show that fullerene patches with nice bound-
aries containing between 1 and 5 pentagons fall into several equivalence
classes; furthermore, any two fullerene patches in the same class can be
transformed into the same minimal configuration using combinatorial al-
terations.

1. INTRODUCTION

A plane graph with all faces hexagonal except one external face, with
all vertices on the boundary of the outside face having valence 2 or 3, and
with all other vertices (called internal vertices) having valence 3 is called a
graphene patch. One way to construct a graphene patch is to take a closed
simple (non-self-intersecting) curve in Λ, the hexagonal tessellation of the
plane, and replace all vertices, edges and faces outside the curve by a sin-
gle outside face. It is clear that a graphene patch constructed in this way is
uniquely determined (up to an isomorphism of plane graphs) by its bound-
ary code; that is, the sequence of valences of boundary vertices in cyclic or-
der. A boundary code can be written starting at any vertex and proceeding
in either a clockwise or counterclockwise direction. Hence, a given bound-
ary code is actually a representative of the equivalence class of codes under
cyclic permutations and inversions.

However, not every graphene patch may be constructed in this way.
Specifically, the boundary of a graphene patch may yield a self-intersecting
curve when projected onto Λ. In this case, the patch may not be uniquely
determined by its boundary code. In [9], Guo, Hansen, and Zheng de-
scribed two nonisomorphic graphene patches with the same nonsymmet-
ric boundary code. We say that the boundary code of a graphene patch is
ambiguous if there are two or more nonisomorphic graphene patches with
the same boundary code. It is implicit in [4] that ambiguity for graphene
patches is topological in the following sense: Consider two nonisomorphic
graphene patches with the same nonsymmetric boundary code and use the
boundary code to trace the boundary as a self-intersecting circuit in Λ. We
may think of this self-intersecting circuit as a local homeomorphism f of
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the unit circle into the plane. Then each patch gives an extension of f to
a local homeomorphism into the entire disk. That these graphene patches
are nonisomorphic corresponds to the fact that the extensions are not ho-
motopic.

In this paper we investigate patches with ambiguous boundaries that in-
clude some pentagonal faces. In particular we will be interested in patches
on a fullerene: a trivalent plane graph with only hexagonal and pentago-
nal faces. For the patches we consider, we show that the ambiguities are
combinatoral rather than topological.

Definition 1. A fullerene patch or, in this paper, simply a patch is a plane
graph with all faces hexagonal or pentagonal except for one external face
of a different degree (not 5 or 6), with all vertices on the boundary of the
external face having valence 2 or 3, and with all remaining internal vertices
having valence 3. We again use the term boundary code to describe the se-
quence of valences of 2’s and 3’s in cyclic order on the boundary.

We will adopt the notation from [7] and let a patch be denoted as Π =

(V, E, F, B) where V and E are the vertex and edge sets, F is the set of faces
excluding the external face, and B is the bounding circuit of the external face.
One method of constructing a patch is to take a simple closed curve on a
fullerene, and consider the subgraph created by deleting all vertices and
edges on the “outside” of the curve. However, the uniqueness property of
similarly-constructed graphene patches does not hold for fullerene patches
constructed in this way. In fact, very frequently nonisomorphic patches
will have identical boundary codes. Even graphene patches formed from
closed simple curves on fullerenes are not known to have unambiguous
boundary.

Definition 2. Two patches with the same boundary code are similar. For
any patch Π the collection of patches similar to Π is called its similarity
class and is denoted by S(Π); the class is trivial when all patches in S(Π)

are isomorphic. It should be apparent that graph-isomorphic patches have
the same boundary code.

In this paper we consider patches containing between 1 and 5 pentagons
with “nice boundaries.” We show that the similarity classes of these patches
are of eight basic types and that for patches in the same similarity class
there exists a sequence of combinatorial alterations that transforms one
patch to another.
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2. LINEAR PATCHES

Let Π = (V, E, F, B) be a patch. For any internal face f ∈ F, let B( f )
denote its boundary; so either B( f ) ∩ B is empty or consists of one or more
paths. These paths are the paths on the boundary B joining consecutive
degree-3 vertices.

Definition 3. The paths of B( f ) ∩ B over all f are called the segments of
the boundary. A segment of length i will be called an i-segment, and the
number of i-segments in B will be denoted by si.

Definition 4. Linear patches are patches with s1 = 0 consisting of strings
of hexagons capped off at each end with a hexagon or a pentagon – see
Figure 1.

In [7] it was shown that the similarity class of a linear patch with at most
one pentagonal end is trivial. On the other hand, the similarity class of any
linear patch with two pentagonal ends includes some additional nonlinear
patches and is nontrivial, as is illustrated in Figure 3.

FIGURE 1. Linear patches.

Lemma 5. Let Π = (V, E, F, B) be a patch with s1 = 0.

(1) If Π admits a face f such that B( f )∩ B consists of more than one segment,
then Π is a linear patch.

(2) If Π admits a pentagonal face f such that |B( f ) ∩ B| = 4, then Π is a
linear patch.

(3) If Π admits a hexagonal face f such that |B( f ) ∩ B| = 5, then Π is a
linear patch.

Proof. These results clearly hold for all patches with one or two faces. Let
Π = (V, E, F, B) be a patch with s1 = 0 and n > 2 faces, and assume that
these results hold for all such patches with fewer than n faces.

First assume that Π admits a face f such that B( f ) ∩ B consists of more
than one segment. Since s1 = 0, each boundary segment has length at least
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2. Thus f is a hexagon, each boundary segment of B( f ) ∩ B has length 2,
and f shares one edge with a face g and the antipodal edge with a face h.
Deleting f leaves two subpatches, Πg and Πh, where |B(g) ∩ B(Πg)| ≥ 5
and |B(h) ∩ B(Πh)| ≥ 5. So Πg and Πh are both linear by induction, and
hence Π is linear.

Assume next that Π admits a pentagonal face f such that |B( f ) ∩ B| = 4
or a hexagonal face f such that |B( f ) ∩ B| = 5. Then f shares an edge with
exactly one other face, g. Since Π has more than 2 faces, g has more than
one boundary segment and we are back in the first case. �

It is convenient to treat linear patches and non-linear patches separately.

Lemma 6. If Π = (V, E, F, B) is a non-linear patch with s1 = 0, then

(1) for f ∈ F, B( f ) ∩ B is empty or a single segment;
(2) for f ∈ F, |B( f ) ∩ B| = 4 implies f is a hexagon;
(3) s5 = 0;
(4) p(Π) = 6− s3 − 2s4, where p(Π) is the number of pentagons contained

in the patch Π.

Proof. The first three conditions follow at once from Lemma 5. The fourth
condition is a special case of the following direct consequence of Euler’s
formula, proved in [7]: p(Π) = 6 + s1 − s3 − 2s4 − 3s5. �

It is an obvious consequence of this fourth condition that a non-linear
patch with s1 = 0 may contain at most six pentagonal faces. If Π is such a
patch with six pentagonal faces, s3 = s4 = s5 = 0. Hence its boundary con-
sists of m segments of length 2, for some m. Adding a layer of hexagons
around this boundary yields another patch with an identical boundary
and m more faces; this is the F expansion defined in [10]. Therefore all
non-linear patches with s1 = 0 and six pentagonal faces have ambiguous
boundary code, and in fact the similarity class of each is infinite. Thus we
restrict our attention to non-linear patches with s1 = 0 and with one to five
pentagonal faces. Following [3]:

Definition 7. A pseudoconvex patch is a non-linear patch with s1 = 0 con-
taining one to five pentagonal faces.

3. PSEUDOCONVEX PATCHES

Pesudoconvex patches were discussed in detail in [8], and we use the
same terminology here.

Definition 8. A side of a pseudoconvex patch is the section of the boundary
(including the faces) between a consecutive pair of degree 2 vertices. The
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length of a side is one less than the number of faces on the side. Three con-
secutive degree 2 vertices on the boundary correspond to a side of length
zero containing just one face.

For a pseudoconvex patch or a linear patch Π, we introduce several param-
eters and more notation:

(1) `(Π) denotes the sum of the lengths of every side;
(2) s = s(Π) denotes the number of sides of Π;
(3) The cyclic sequence [`1, . . . , `s] denotes the side lengths of Π listed

counterclockwise around the patch.
(4) The similarity class S(Π) will also be denoted by S[`1,...,`s] when the

side lengths of Π are [`1, . . . , `s].

The following lemma summarizes a few results proven in [8].

Lemma 9. Let Π = (V, E, F, B) be a pseudoconvex patch with side lengths
[`1, . . . , `s]. Then

(1) s = s(Π) = 6− p(Π).
(2) There are no consecutive 0s in [`1, . . . , `s].
(3) If `s and `2 are both nonzero and all faces on the `1 side are hexagons

(including both terminal 3-faces when `1 > 0), deleting all of the faces on
the `1 side of Π results in Π′ = (V ′, E′, F′, B′) which is either a linear
patch or another pseudoconvex patch. The side lengths of Π′ are
(a) [`1 + 1, `2 − 1, `3, . . . , `s−1, `s − 1], when s > 2;
(b) [`1 + 1, `2 − 2], when s = 2;
(c) [`1 − 1], when s = 1

4. COMBINATORIAL AMBIGUITIES

Definition 10. By a hexpath joining two pentagonal faces we mean either
a linear patch with pentagonal terminal faces or two linear patches with
one pentagonal terminal face and one hexagonal terminal face sharing the
hexagonal terminal face and making an angle of 120 degrees on the left
there. See Figures 3 and 4. The Coxeter coordinates (n) of a straight hex-
path is the length of the corresponding straight path in the dual; the Cox-
eter coordinates (n, k) of a two leg hexpath are the lengths of the corre-
sponding straight paths in the dual. We often refer to them as either (n)-
hexpaths or (n, k)-hexpaths. The notation (n, 0)-hexpath, (0, n)-hexpath and
(n)-hexpath will be used interchangeably.

Lemma 11. Let Π be a pseudoconvex patch containing at least two pentagons and
let Π′ be a subpatch of Π containing at least one pentagon but not every pentagon.
Then there exists a hexpath from a pentagon in Π′ to a pentagon not in Π′.
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Proof. Let Π and Π′ be as stated. Consider the facial distances between
every pentagon in Π′ to every pentagon not in Π′. Let f be a pentagon
in Π′ and g be a pentagonal face not in Π′ so that the distance between f
and g is the minimum over all such pairs. Consider a shortest polygonal
path of faces in Π joining f to g. By the choice of f and g, all of the faces
on this polygonal path are hexagons; it remains to show that this path is
indeed a hexpath. Since all interior faces in the corresponding dual path
are triangular, no shortest path can make a sharp, 60◦ turn (see [1] in Figure
2); otherwise, the hexagon h at the turn may simply be deleted from the
path resulting in a shorter path.

[1]

h

[2]
h1

h2

hq
hq+1h′1

h′2

h′q

[3]h′q

hq

h′2

h2

h′1

h1

FIGURE 2.

Next suppose that the shortest dual path joining f and g makes consec-
utive left turns (see [2] in Figure 2). Let h1, . . . , hq+1 denote the faces on
the segment between the turns including both faces at the turns. Note that
the edge in common with h1 and face labeled h′1 would be a boundary seg-
ment of length 1 if h′1 did not belong to the patch. Hence, h′1 belongs to the
patch. Also, h′1 must be a hexagon, otherwise we contradict the way f and
g were chosen. Now the same argument can be applied to h′2 and so it too
belongs to the patch. Inductively, h′1, . . . , h′q are all hexagons belonging to
the patch. Replacing h1, . . . , hq+1 by h′1, . . . , h′q results in a shorter dual path
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joining f and g and a contradiction. By the same argument there cannot be
two consecutive right turns.

Finally, we choose from among all shortest dual paths joining f and g the
one with the longest straight segment before a first left turn. (If the first turn
is a right turn, we will interpret this as starting off with a segment of length
0 followed by a left turn.) We wish to prove that this particular shortest
dual path has just two straight segments. Suppose there is a right turn after
the first left turn. Starting with the face at the right turn, we label the faces
back to but not including the face at the left turn h1, . . . , hq (see [3] in Figure
2). Employing the argument just used above, we see that the faces labeled
h′1, . . . , h′q must be hexagons belonging to the patch. Replacing h1, . . . , hq by
h′1, . . . , h′q then results in an f , g-path of the same length but with a longer
initial straight segment contradicting our choice of this path. �

Σ

ΣL

ΣR

FIGURE 3. A (5)-hexpath, Σ, and the similar patchs ΣL and
ΣR, each representing an α step.

Endo and Kroto [5] provided a method of constructing a patch similar to
a linear patch. Let Σ be an (n)-hexpath joining a pair of pentagonal faces,
where n > 1. Then the similar patch is formed by inserting one new ver-
tex on each edge of Σ separating a pentagon from its adjacent hexagon,
and two new vertices on each edge of Σ separating two adjacent hexagons.
Edges may then be added in two different ways, as demonstrated in Fig-
ure 3, resulting in the similar patch Σ′L containing a (1, n− 2)- hexpath or
the similar patch Σ′R containing a (n− 2, 1)-hexpath. If Π is a pseudocon-
vex patch containing such a hexpath Σ, replacing Σ by ΣL or ΣR results
in a pseudoconvex patch Π′ that is similar to Π and contains n − 1 more
faces. Replacing Π by Π′ is called an α step; if this replacement is made in a
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larger patch, then the choice of ΣL versus ΣR may result in non-isomorphic
patches.

The Endo-Kroto construction can be generalized to any (n, k)-hexpath
joining a pair of pentagonal faces with nk > 1. Let Σ be such a hexpath.
Then a similar patch is formed by inserting one new vertex on each edge of
Σ separating a pentagon from its adjacent hexagon, and two new vertices
on each edge of Σ separating two adjacent hexagons and adding edges, as
demonstrated in Figure 4, is a similar patch containing an (n − 1, k − 1)-
hexpath joining a pair of pentagonal faces. We denote this new patch by
Σ′. Note that in this case, the edges may be added in just one way. If Π is a
pseudoconvex patch containing such a hexpath Σ, replacing Σ by Σ′ results
in a pseudoconvex patch Π′ that is similar to Π and contains n+ k− 1 more
faces. Replacing Π by Π′ is called an β step.

FIGURE 4. A (2, 2)-hexpath Σ, and the similar patch Σ′ con-
taining a (1, 1)-hexpath.

It is clear that any patch obtained from Π by a sequence of α and β

steps will be similar to Π. We also note that when a (1, n− 2)-hexpath, an
(n − 2, 1)-hexpath or an (n − 1, k − 1)-hexpath is bordered by a sufficient
set of hexagons, we may reverse these constructions. We call this reverse
constructions α−1 and β−1 steps.

Since each α or β step produces another patch in the same similarity class
with more faces, the sequence of similar patches constructed by a sequence
of α and β steps must all be distinct. As we will soon verify, the number
of patches in the similarity class of a pseudoconvex patch is finite. There-
fore starting with any pseudoconvex patch, any sequence of α and β steps
must terminate in a similar pseudoconvex patch for which no α or β step is
possible.
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Definition 12. A patch Π in the similarity class S is called a terminal patch
if no α or β step is possible in Π. The smallest linear or pseudoconvex sub-
patch of a terminal patch containing all of the pentagonal faces is a minimal
configuration.

Terminal patches and minimal configurations are closely related to nanocones
and the tips of nanocones. We will need need several results that were
proven in the context of nanocones.

Definition 13. A nanocone or cone is an infinite trivalent plane graph with
hexagonal faces and one to five pentagonal faces. Adopting the terminol-
ogy from [3], two cones are equivalent if each has a finite subgraph so that
when the subgraphs are deleted the remaining graphs are isomorphic.

This is an equivalence relation among cones forming eight equivalence
classes. These classes are described by Klein and Balaban in [11]. A proof
that these are indeed the only possibilities is given in [3]. That paper, in
turn, relies in part on a result of Balke in [1]. Using the terminology from
[3], we summarize this classification and consolidate the results from these
three papers that are relevant to this paper. The classification of cones is
based on the classification of the nontrivial rotations in the symmetry group
of Λ, the regular hexagonal tessellation; the list of these rotations is given
below.

Proposition. The nontrivial rotations in the symmetry group of Λ are:

(1) rotations by 60◦ about the centers of faces;
(2) rotations by 120◦

(a) about the centers of faces or
(b) about vertices;

(3) rotations by 180◦

(a) about centers of faces or
(b) about centers of edges;

(4) rotations by 240◦

(a) about the centers of faces or
(b) about vertices;

(5) rotation by 300◦ about centers of faces.

If x is the center of one of the above rotations by k× 60◦, we may excise a
k× 60◦ wedge at x and identify the edges to get a geometric cone, which we
will denote by Λk or Λk(a) or Λk(b). A geometric cone is an infinite graph
that has, with exactly one exception at the cone tip, only hexagonal faces
and only vertices of degree 3. The exceptions at the tip of these geometric
cones are pictured in Figure 5 and listed in Table 1.
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Λ1

Ω1

Λ5

Ω5

Λ2a

Ω2a

Λ2b

Ω2b

Λ3a

Ω3a

Λ3b

Ω3b

Λ4a

Ω4a

Λ4b

Ω4b

symmetric ≈ near-symmetric

symmetric near-symmetric symmetric near-symmetric

FIGURE 5. Cone Tips.
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Cone Tip
Λ1 a pentagonal face

Λ2(a) a quadrilateral face
Λ3(a) a triangular face
Λ3(b) a “half-edge”
Λ4(a) a valence 2 face
Λ4(b) a pendant vertex
Λ5 a loop

TABLE 1. Geometric Cone Tips.

Now each of these geometric cone tips can be replaced by a tight config-
uration of pentagonal faces resulting in a unique cone, called the represen-
tative cone, for each of the eight equivalence classes; the smallest pseudo-
convex patch containing the configuration of pentagonal faces is called the
cone tip. These eight cone tips are also pictured in Figure 5.

Given a pseudoconvex patch Π with side lengths (`1, . . . , `s) we may
reverse the process discussed in Lemma 9: instead of deleting all of the
faces of a side we may add a row of hexagons to a side. Adding a row of
hexagons to each side in turn results in a patch with all side parameters
increased by 1; call this patch Π1. Repeatedly adding rings of hexagons
produces an infinite sequence of nested graphs Π0 = Π, Π1, Π2, . . ., and the
union of these patches is a trivalent graph with all hexagonal faces except
exactly s (1 ≤ s ≤ 5) pentagonal faces - that is, a cone. Hence each linear
or pseudoconvex patch may also be thought of as a patch in a uniquely
determined cone.

The focus of [3] is the collection of pseudoconvex patches in which all
side lengths are equal, symmetric patches, or in which `1 = `2 − 1 = · · · =
`s − 1, near-symmetric patches. These patches are called cone patches in [3]
when they include a pentagon as a bounding face and correspond to our
cone tips and in that paper, the appropriate cone tip for a given cone patch
is determined by whether the patch is symmetric or near-symmetric.

By repeatedly adding hexagons to the sides of a pseudoconvex patch, we
may embed each pseudoconvex patch in a symmetric or near-symmetric
patch. To see this we consider the pseudoconvex patches based on the
value of s.

Lemma 14. Every pseudoconvex patch Π is a subpatch of a symmetric or near-
symmetric patch, and there is a unique cone containing Π.

Proof. Let Π be a pseudoconvex patch. If s = 1, Π is a symmetric patch
containing 5 pentagons. It follows from [3] that the unique cone containing
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Π has the cone tip Ω5. If s = 2, let Π have side lengths [`1, `2] with `1 ≤ `2.
We may add a row of hexagons to the side of length `2 to get a pseudocon-
vex patch with side length `′1 = `1 + 2 and `′2 = `2 − 1. If `′1 < `′2 − 1, we
may repeat the process and we may continue to do so until we reach a cone
patch Π∗ with side lengths `∗1 = `∗2 − 1, `∗1 = `∗2 or `∗1 = `∗2 + 1. We also note
that `′2− `′1 = `2− `1− 3 and therefore |`∗2 − `∗1 | ≡ |`2− `1|mod 3. We con-
clude that when `1 ≡ `2 mod 3 the extension to a cone patch is symmetric
otherwise the extension to a cone patch is near-symmetric.

When s = 3, let Π have side lengths [`1, `2, `3]; we again repeatedly add
a row of hexagons to the longest side which will result in a cone patch Π∗

with side lengths `∗1 = `∗2 − 1 = `∗3 − 1 or `∗1 = `∗2 = `∗3 after suitable re-
ordering. In this case, we note that the process of adding a row of hexagons
changes the parity of each length. Hence, if the side lengths of Π are all
even or all odd, the resulting cone patch Π∗ will have equal side lengths
and by [3] the unique cone containing Π has the cone tip Ω3a; if the side
lengths of Π do not all have the same parity, the unique cone containing Π
has the cone tip Ω3b.

Finally, consider s = 4, with Π having side lengths [`1, `2, `3, `4]. If `2 6=
`4, we may repeatedly add hexagons to the larger of these two sides side
until `′2 = `′4. Then, we may add hexagons to the side corresponding to
larger of `′1 and `′3 and repeat this until we have a pseudoconvex patch Π′′

with `′′1 = `′′3 and `′′2 = `′′4 . If the lengths are not all equal, (without loss
of generality) we assume that `′′1 > `′′2 . Now alternately adding hexagons
to the `′′1 and `′′3 sides will result in a cone patch Π∗ with side lengths `∗1 =

`∗2 = `∗3 = `∗4 or (reordering if needed, `∗1 = `∗2− 1 = `∗3− 1 = `∗4− 1. Noting
that (`∗1 + `∗3) ≡ (`∗2 + `∗4) mod 3 if and only if (`1 + `3) ≡ (`2 + `4) mod 3,
we conclude from [3] that the unique cone containing Π has the cone tip
Ω2a when (`1 + `3) ≡ (`2 + `4) mod 3 and the cone tip Ω2b otherwise. �

Two observations: first, the cone tip Ω2(a) is the Stone-Wales patch. A
90◦ rotation of the Stone-Wales patch is boundary preserving; that is, in a
larger patch the Stone-Wales patch can be replaced by its rotation. How-
ever, this rotation may result in a non-isomorphic larger patch. Secondly,
each pseudoconvex patch in a similarity class can be embedded in a fixed
cone patch. Since the number of faces in a cone patch is bounded by a func-
tion of its side lengths, the number of faces in a patch in a given similarity
class is bounded. In the next lemma, we summarize our results along with
some of those from [1],[2], [3] and [11].

Definition 15. A pseudoconvex patch containing one of the cone tips Ω1,
Ω2a (in either orientation), Ω2b, Ω3a, Ω3b, Ω4a, Ω4b or Ω5 is called a cone tip
patch.
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Lemma 16. Let S be a non-empty similarity class of pseudoconvex patches. Then
S is finite and, with the exception of case (2) below, contains one unique cone tip
patch.

(1) If S = S[`1,`2,`3,`4,`5], then S contains the cone tip patches with configura-
tion Ω1 at the tip.

(2) If S = S[`1,`2,`3,`4] where (`1 + `3) ≡ (`2 + `4) mod 3, then S contains
two cone tip patches with configuration Ω2a (one in each orientation) at
the tip or one cone tip patch with configuration Ω2a when the patch admits
a symmetry agreeing with the Stone-Wales transformation at the tip.

(3) If S = S[`1,`2,`3,`4], where (`1 + `3) 6≡ (`2 + `4) mod 3 then the cone tip
patch in S has configuration Ω2b at the tip.

(4) If S = S[`1,`2,`3], where `1, `2 and `3 have the same parity, then the cone
tip patch in S has configuration Ω3a at the tip.

(5) If S = S[`1,`2,`3], where `1, `2 and `3 do not have the same parity, then the
cone tip patch in S has configuration Ω3b at the tip.

(6) If S = S[`1,`2], where `1 ≡ `2 mod 3, then the cone tip patch in S has
configuration Ω4a at the tip.

(7) If S = S[`1,`2], where `1 6≡ `2 mod 3, then the cone tip patch in S has
configuration Ω4b at the tip.

(8) If S = S[`1], then the cone tip patch in S has configuration Ω5 at the tip.

The method by which the cone tip patch in S[`1,...,`s] is constructed is de-
scribed in [3]. In Figure 5, we have illustrated this or a similar construc-
tion for all of the cone tips except Ω5; the region of Λ included here is not
large enough to include the path. Note that in the cases that s equals 4
or 5, the triangle may actually cross the path and the identification cannot
be made. This simply means that no pseudoconvex patch exists with those
side lengths. For all other values of s the geometric cone can be constructed;
but, in some cases, the singularity may be so close to the boundary that the
tip can’t be inserted and again S[`1,...,`s] will be empty.

We now turn to minimal configurations. By definition, these linear or
pseudoconvex patches contain no pair of pentagons that are joined by an
(n)-hexpath for n > 1 or an (n, k)-hexpath for nk > 1 and they admit no
pseudoconvex subpatch containing all of the pentagonal faces. The cone
tips Ω2a (in either orientation), Ω2b, Ω3a, Ω3b, Ω4a, Ω4b or Ω5 are clearly
minimal. There is one other configuration that is clearly minimal: three
pentagons sharing alternate edges with a central hexagon, the left-hand
configuration in Figure 8 which we denote by Ω3.

Lemma 17. The only minimal configurations are the cone tips and Ω3.
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Proof. We see at once that Ω2b is the only minimal configuration that is
linear. Let Ω be a minimal configuration other than Ω2b. Since Ω is pseu-
doconvex, any side of length 0 must be a hexagonal face that can be deleted
to get a smaller pseudoconvex patch containing all of the pentagonal faces.
Hence all of the side lengths are positive and all boundary segments have
lengths 2 and 3. It will be convenient to call the faces with boundary seg-
ments of length 3 corner faces. If all of the faces on a side, including both
corners, are hexagons, they may all be deleted resulting in a smaller pseu-
doconvex patch containing all of the pentagonal faces. Hence, each side of
Ω contains a pentagonal face. There are two basic cases to consider: there
is just one pentagon on the boundary or there are at least two pentagons on
the boundary.

Suppose first that Ω has more than one pentagonal face on its sides and
list them in counterclockwise order f1, . . . , fm. Since no side is devoid
of pentagons, any two consecutive pentagonal faces are joined by an (n)-
hexpath or an (n, m)-hexpath on the boundary. Hence fi is joined to fi+1 by
a (1)-hexpath or a (1, 1)-hexpath, for i = 1, . . . , m− 1, and fm is joined to f1

by a (1)-hexpath or a (1, 1)-hexpath. We note that, if fi is joined to fi+1 by
a (1, 1)-hexpath, the intervening hexagonal face must be a corner. We also
note that the number of corners is equal to the number of sides.

By formula (1) from Lemma 9, the number of pentagons on the sides
(the number of hexpaths) plus the number of sides (the number of (1, 1)-
hexpath) is six or less. We conclude that the number of (1)-hexpaths plus
twice the number of (1, 1)-hexpaths on the boundary is six or less while
the total number of hexpaths is less than six. Hence the possibilities for
the sequences of Coxeter coordinates for the hexpaths joining consecutive
pentagons around the boundary are:

(1) {(1), (1)};
(2) {(1), (1, 1)};
(3) {(1, 1), (1, 1)};
(4) {(1), (1), (1)};
(5) {(1), (1), (1, 1)};
(6) {(1), (1, 1), (1, 1)};
(7) {(1, 1), (1, 1), (1, 1)};
(8) {(1), (1), (1), (1)};
(9) {(1),(1), (1), (1, 1)};

(10) {(1), (1), (1, 1), (1, 1)};
(11) {(1), (1, 1), (1), (1, 1)};
(12) {(1), (1), (1), (1), (1)};
(13) {(1), (1),(1), (1), (1, 1)}.
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The number of (1) hexpaths plus 2 times the number of (1, 1) hexpaths is
the number of faces on the boundary. If this number is less than 5 (cases 1 to
5 and 8 ) then every face is on the boundary. Case (1) with only 2 bounding
faces is Ω2b. Case (2) can only be two pentagons and a hexagon sharing a
common vertex; this is not a minimal configuration but contains Ω2b. Case
(3) with 2 pentagonal faces alternating with two hexagonal corners is Ω2a;
Case (4) can only be Ω3a and Case (5) can only be Ω3b. Case (6) has five
faces in its boundary hence the interior is a single pentagon and the patch
is Ω4b. Case (7) has six faces in its boundary; hence the interior is a single
hexagon bounded by pentagons on alternate edges: Ω3. The boundary in
Case (8) consists of 4 pentagons giving Ω4a.

In case Case (9), we have 4 pentagons and 1 hexagon on the boundary;
hence, they bound a pentagon giving Ω5. Cases (10) and (11) have bound-
aries consisting of 4 pentagons and 2 hexagons all incident with a common
interior hexagon. In these cases there is always a pair of pentagons joined
by a (2) hexpath through the central hexagon; hence, these are not mini-
mal configurations. Case (12) is excluded since it has 5 pentagons around
a central pentagon, giving 6 pentagons. Finally Case (13) has 5 pentagons
and one hexagon around a hexagon and, like cases (10) and (11), admits a
pair of pentagons joined by a (2) hexpath through the central hexagon and
thus is not minimal.

Now we must confront the case where there is only one pentagon f on
the boundary. Since f must be incident with every other face, Ω has 1 or 2
sides; if it has 2 sides f must meet both sides and hence must be a corner.
In either case if f is a corner, its removal leaves a pseudoconvex patch Π
with 3 or 4 pentagons but all hexagons on its boundary. If Π admits two
pentagons joined by a (n) hexpath with n > 1 or an (n, m) hexpath with
mn > 1, then Ω is not minimal. Hence, Π contains a pseudoconvex patch
Π′ consisting of one of Ω3a, Ω3b, Ω3, Ω4a or Ω4b surrounded by a ring of
hexagons. Using Lemma 11, it is straight forward but somewhat tedious
to verify that, in each case, f is joined to some pentagon in Π′ by a (n, m)

hexpath where mn > 1.
All that remains to consider is the case where Ω has one side and only

one pentagonal, non-corner face f on that side. In this case the interior of Ω
contains a copy Ω4a or Ω4b. As above it is straight forward but somewhat
tedious to eliminate the possibility that f is not adjacent to a face of this
core. Assume then that f shares an edge with a face of Ω4a or Ω4b. Again,
one easily checks that none of these possibilities is minimal. �

One last task before we can state and prove the main result of our pa-
per is to introduce two infinite families of exceptional similarity classes,
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S[1,1,n,n], n > 1, (Figure 6) and S[0,2,n,n+1], n > 2, (Figure 7), and one ad-
ditional exceptional similarity class S[2,2,2] (Figure 8). Each of these simi-
larity classes contain exactly two pseudoconvex patches neither of which
can be transformed into the other by a sequence of α, β, α−1 and β−1 steps.
Specifically the arrangements of the pentagons precludes applying α or β

and there are not sufficient bounding hexagons to apply α−1 or β−1. The
patches in Figure 8 have asymmetric boundaries and the symmetries of the
patches in patches in Figure 6 do not match the Stone-Wales transformation
at the tip.

FIGURE 6. The only two patches in S[1,1,n,n], n > 1.

FIGURE 7. The only two patches in S[0,2,n,n+1], n > 2.

FIGURE 8. The only two patches in S[2,2,2] – the patch on
the left is Ω3.

Theorem 18. Let S be a nonempty similarity class of pseudoconvex patches differ-
ent from S[2,2,2], S[1,1,n,n], and S[0,2,n,n+1], and let Π and Π′ be two pseudoconvex
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patches in S . Then there is a sequences of α, β, α−1 and β−1 steps that transform
Π into Π′.

Proof. Let Π and Π′ be two pseudoconvex patches in S . Then by Lemma 17,
there is a sequence of α and β steps taking Π to a cone tip patch or a patch
containing Ω3 in S and a sequence of α and β steps taking Π′ to a cone
tip patch or a patch containing Ω3 in S . If both sequences of steps end in
the same patch, concatenating one sequence with the reverse of the other
is the sequence we seek. By Lemma 16 the only cases in which the ter-
minal patches could be different are: S equals S[`1,`2,`3] where `1, `2 and `3

have the same parity and S[`1,`2,`3,`4] where (`1 + `3) ≡ (`2 + `4) mod 3. In
these cases, there are two distinct possibilities for the terminal patch. All
that remains to show that, for the similarity classes in these cases but dif-
ferent from the excluded case, there is a short sequence of α, β, α−1 and
β−1 steps that takes one of the terminal patches into the other. These steps
are illustrated in Figures 9 and 10. In both cases, the necessity of avoiding
the excluded patches forces additional hexagonal faces providing sufficient
room to transform one patch into the other. �

Π β−1(Π) β(β−1(Π)) β(β(β−1(Π)))

FIGURE 9. A patch Π with exactly three pentagons con-
taining the exceptional case and at least two more faces.

Using the terminology from [3], we have the following corollaries for
cones.

Corollary 1. If Θ and Φ are two equivalent cones then there is a sequences
of α, β, α−1 and β−1 steps that transform Θ into Φ.

Corollary 2. With the exception of the patches with side parameters (1, 1, 1, 1)
or (2, 2, 2), any symmetric or near-symmetric patch in a cone may be trans-
formed into any other symmetric or near-symmetric patch with the same
boundary by a sequence of α’s, β’s, α−1’s, and β−1’s.
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Π α−1(Π) α(α−1(Π))

FIGURE 10. A patch Π with two pentagons in configura-
tion Ω2b and the transformation to the rotated configuration
Ω2b. Only the shaded hexagons are necessary for the trans-
formations; the others are “spectator” faces.

REFERENCES

1. L. Balke, Classification of Disordered Tilings, Annals of Combinatorics 1 (1997) 297–311.
2. J. Bornhoft, G. Brinkmann and J. Greinus, Pentagon-hexagon-patches with short boundaries,

European Journal of Combinatorics 24 (2003) 517–529.
3. G. Brinkmann, N. V. Cleemput, Classification and Generation of Nanocones, Discrete Ap-

plied Mathematics 159 (2011) 1528-1539.
4. G. Cargo and J.E. Graver, When does a curve bound a distorted disk?, SIAM J. Discrete

Math, Vol. 25, No. 1 (2011) pp 280-305.
5. M. Endo and H. W. Kroto, Formation of carbon nanofibers, J. Phys. Chem. 96 (1992) 6941–

6944.
6. J.E. Graver, The (m,k)-patch boundary code problem, MATCH 48 (2003) 189–196.
7. J.E. Graver and C. Graves, Fullerene Patches I, Ars Mathematica Contemporanea, 3 (2010)

104–120.
8. C. Graves and J. McLoud-Mann, Side lengths of pseudoconvex fullerene patches, Ars Math-

ematica Contemporanea, 5 (2012) 291–302.
9. X. Guo, P. Hansen and M. Zheng, Boundary Uniqueness of Fusenes, Discrete Applied

Mathematics 118, No. 3, (2002) 209-222.
10. M. Hasheminezhad, H. Fleischner, B. D. McKay, A universal set of growth operations for

fullerenes, Chem. Phys. Lett., v. 464, Is. 1-3 (2008), 118–121
11. D.J. Klein and A.T. Balaban, The Eight Classes of Positive-Curvature Graphic Nanocones, J.

Chemical Information and Modeling 46 No. 1 (2006) 307–320.
12. A. J. Stone and D. J. Wales, Theoretical studies of icosahedral C60 and some related species,

Chem. Phys. Lett., (1986), 501–503.

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NY 13244-1150;
THE UNIVERSITY OF TEXAS AT TYLER, TYLER, TX 75799

E-mail address: jegraver@syr.edu, cgraves@uttyler.edu, sgraves@uttyler.edu


	1. Introduction
	2. Linear Patches
	3. Pseudoconvex Patches
	4. Combinatorial Ambiguities
	References

