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With as few as eight individuals and five alternatives, there are 561, 304, 372, 286, 875, 579, 077, 983
strategy-proof social choice rules.
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The Gibbard–Satterthwaite theorem, now almost 30 years
old, has become a staple of microeconomic theory, social choice
theory, and mechanism design (Gibbard, 1973; Satterthwaite,
1975). Everyone understands that there are very few strategy-
proof procedures: Asmany dictatorial rules as there are individuals
and a handful of rules that have small range, that select less than
all alternatives. But there are more strategy-proof rules than you
think.

Suppose that there are m alternatives, making up the set X ,
and n individuals, making up the set N . A coalition is a subset
of N . For simplicity, assume that preferences are strong, i.e.,
antisymmetric as well as transitive. There are then m! possible
preference orderings. A profile u is an assignment of one preference
ordering, ≻i, to each individual i : u = (≻1, ≻2, . . . ,≻n) and so
there are (m!)n profiles. A social choice rule selects one of the
alternatives at each profile. There are, therefore, m(m!)n social
choice rules. But how many of these rules are strategy-proof?

Classified by the size of their range, there are three kinds of
strategy-proof rules.

(1) Rules with |Range(f )| = 1. There arem such constant rules.
(2) Rules with |Range(f )| > 2. Such rules are necessarily dictato-

rial by the Gibbard–Satterthwaite theorem. So for each such
range there are n rules, one for each possible dictator. Of the
2m

− 1 non-empty subsets of X , i.e., possible ranges,m are sin-
gletons and

m
2


=

m(m−1)
2 are pairs, so there are 2m

− m −

m(m−1)
2 − 1 possible ranges of three or more alternatives. Alto-

gether then, there are n[2m
− m −

m(m−1)
2 − 1] strategy-proof

rules in this category.
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(3) Rules with |Range(f )| = 2. There are, as noted earlier, m(m−1)
2

possible ranges of two alternatives. Suppose that the range of
rule f is {x, y}. If f is strategy-proof, then the value of f at profile
u is entirely determined byhow individuals order just x and y at
u. If any other part of an individual’s ordering affects the social
choice, that individual could manipulate the social choice rule.
Accordingly, f is completely characterized by the collection C
of winning coalitions for x against y, those coalitions at which
f (u) = x when x is preferred to y by exactly the members of
that coalition i.e.,

f (u) = x if and only if {i/x≻i y} ∈ C.

The best known example, for an odd number of individuals,
is simple majority voting between a pair of alternatives. In
this strategy-proof case, C is the collection of all coalitions of
cardinality greater than n/2. It is important to observe that this
collection satisfies the superset property:

J ∈ C and J ⊆ J∗ ⊆ N implies J∗ ∈ C.

This generalizes: A rulewith range {x, y} is strategy-proof if and
only if the collectionC of coalitionswinning for x against y satisfies
the above superset property. Now suppose that we are given a
collection of coalitions satisfying the superset property, and define
rule f by the condition

f (u) = x if and only if {i/x≻i y} ∈ C.

Then f is certainly strategy-proof, but does not necessarily have
range {x, y}. For example, if C = 2N , then the f determined by C
would be a constant rule always selecting x. At the other extreme, if
C is empty, so there is no coalition winning for x, the f determined
by C would be a constant rule always selecting y. By a chain
we mean a collection of coalitions, C, that satisfies the superset
property. For all chains except the empty collection or C = 2N , the
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rule defined by f (u) = x if and only if {i/x≻i y} ∈ C, is a strategy-
proof rule with a range of two. Counting the strategy-proof rules
with range of two is equivalent to counting chains.

Because a chain satisfies the superset property, it is entirely
characterized by its minimal coalitions, where C is a minimal
coalition of C if (1) C is an element of C but (2) no proper subset of
C is an element of C. The collection M , of minimal coalitions for a
strategy-proof rule satisfies the property:

If A, B ∈ Mand A ≠ B, then neither A ⊆ B nor B ⊆ A. (∗)

(In addition to serving as a determinant of strategy-proof rules,
minimal coalitions, according to Riker’s size principle (Riker, 1962),
are the winning coalitions we expect to actually observe as they
evolve from political competition.)

Any collection M of subsets of N satisfying condition (∗) is
called an antichain of N . And any collection C of subsets of N
satisfying the superset property is called a chain of N . But just as
there are chains of N that do not determine a strategy-proof rule
of range two, namely the empty collection and 2N so there are two
antichains that do not determine strategy-proof rules of range two,
namely the empty collection,which yields the constant rule always
selecting y, and {∅}, which yields the rule always selecting x.

Summarizing, then, the number of strategy-proof rules on two
alternatives with a range of both alternatives is M(n) − 2 where
M(n) is the number of antichains on N . To illustrate, if n = 3, the
list of 20 antichains of {1, 2, 3} is

Antichains
{1, 2, 3}
{1, 2}, {1, 3}, {2, 3}
{1, 2}, {1, 3}
{1, 2}, {2, 3}
{1, 3}, {2, 3}
{1, 2}
{1, 3}
{2, 3}
{1}, {2, 3}
{2}, {1, 3}
{3}, {1, 2}
{1}, {2}, {3}
{1}, {2}
{1}, {3}
{2}, {3}
{1}
{2}
{3}
{∅} ∗

∅ ∗

Thenumber,M(n), of antichains on {1, 2, . . . , n} is theDedekind
number for n andM(3) = 20. Because we want to exclude the two
collections (marked by an asterisk) inducing a range of just one
alternative, there are M(n) − 2 antichains corresponding to rules
f with |Range(f )| = 2 and so just that many strategy-proof rules
on two alternatives. Altogether, then, there are m(m−1)

2 [M(n) − 2]
strategy-proof rules with |Range(f )| = 2. (The readermight object
to including the rule with singletonminimal coalition, {1}, because
that means #1 is a dictator and we seem to have already included
the dictatorial rules. But that is not correct. There is a dictatorial
rule for each possible range of more than one alternative. We had
already counted the dictatorial rules that have |Range(f )| > 2 and
now we are adding in the dictatorial rules with |Range(f )| = 2.)
We now illustrate this further, and exploit the astonishing
rapidity with which M(n) grows with n. Suppose that m = 5
and n = 8, the largest n for which there is an exact calculation
of M(n) (Wiedemann, 1991) (The known exact values of M(n)
are available at the Online Encyclopedia of Integer Sequences
and the link is in the Reference list. Wiedemann reports his
calculation took about 200 h on a Cray-2 processor.) There are
5 constant strategy-proof rules with |Range(f )| = 1. There are
16 possible ranges of 3 or more alternatives and so 16 × 8 =

128 dictatorial strategy-proof rules with |Range(f )| > 2. The
number of strategy-proof ruleswith |Range(f )| = 2 is 10×[M(8)−
2] or 10×56, 130, 437, 228, 687, 557, 907, 785 = 561, 304, 372,
286, 875, 579, 077, 850. Altogether, there are 561, 304, 372, 286,
875, 579, 077, 983 strategy-proof rules.

Of course if we impose criteria in addition to strategy-
proofness, trying to make rules more acceptable, we will reduce
this number considerably, as we explore next.

(I) (Anonymity) Suppose, for example, that we wish to impose
anonymity, i.e., make individuals interchangeable. Thatwill permit
the m constant rules but exclude all the dictatorial rules with
|Range(f )| > 2. For strategy-proof rules f with |Range(f )| = 2,
these must be rules where the minimal winning coalitions are all
the same size. But the rules where the minimal coalitions are all
the same size include much more than just the anonymous rules.
For the anonymous rules, the minimal coalitions are exactly all the
coalitions of size t for some n > t > 1. (Of the winning coalitions
for x against y, pick one of smallest size. Any other coalition of
that size can be obtained by a permutation of individuals and, by
anonymity, must be winning for x against y. Any other winning
coalitionmust contain one of these as a subset.) Thus there are n−2
anonymous, strategy-proof rules f with |Range(f )| = 2.

(II) (Neutrality) Now suppose that we wish to allow violations
of anonymity, but impose neutrality, i.e., make alternatives
interchangeable. What about the neutral, strategy-proof rules f
with |Range(f )| = 2 ? That will allow all the dictatorial rules
with |Range(f )| > 2, but exclude all the m constant rules. What
remains is to count the neutral strategy-proof rules f that have
|Range(f )| = 2. (Of course the range condition is assured by
neutrality.)

This is a larger class and includes all weighted majority rules
(with non-negative weights) that are also resolute (i.e., preclude
ties). Thus the count of decisive weighted majority voting rules
will provide a lower bound on the number of neutral strategy-
proof rules with |Range(f )| = 2. For a study of minimal winning
coalitions for weighted majority voting rules, see Fishburn and
Brams (1996) as well as Nitzan and Paroush (1981). But there do
exist neutral strategy-proof rules that are not weighted majority
rules; see Campbell and Kelly (2010). An analysis of the antichains
that yield neutral, decisive, strategy-proof rules is found in
Campbell and Kelly (2012), where for example, it is shown that
for n = 5, there are 611 neutral, strategy-proof rules f with
|Range(f )| = 2. For alternative analyses of the structure of neutral
strategy-proof rules, see Jain (1988) as well as a characterization
based on ultrafilters in Blau and Brown (1989).

The number Ψ (n) of neutral strategy-proof rules f that have
|Range(f )| = 2 grows at least exponentially:

Proposition. Ψ (n) ≥ 2n−1.

Proof. Of the 2n coalitions, half, or 2n−1, are of odd cardinality.
The collection of rules that are simple majority voting on these
coalitions are all distinct. �

(III) (Anonymity and neutrality) If we impose both anonymity
and neutrality then for even n, there are no strategy-proof rules
with |Range(f )| = 2, while for odd n, only simple majority voting
is strategy-proof with |Range(f )| = 2.
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To get a sense of relative magnitudes, if n = 5 andm = 2, there
areM(5) − 2 = 7578 strategy-proof rules with |Range(f )| = 2, of
which 1 is neutral and anonymous, 3 are anonymous, and 81 are
neutral (as determined by Campbell and Kelly (2010)).

(IV) (Full range) Now supposewe allow violations of anonymity
and neutrality but want Range(f ) = X . With our assumption that
preferences are strong, this only allows n (completely) dictatorial
rules. But, if we now allow for weak preferences, i.e., non-trivial
indifference classes, there is a very large number of dictatorial
rules. All that is required for a rule to be dictatorial with dictator
#1 is that f (u) is an element of 1’s topmost indifference set. But
if that topmost set is not a singleton, the choice can be made
dependent on others’ preferences. One frequently mentioned such
rule is serial dictatorship:

(1) If #1’s topmost indifference set is a singleton, f (u) is that
element;

(2) If #1’s topmost indifference set I1 has more than one element,
look at #2’s ordering restricted to I1; if that restricted ordering
has a topmost alternative, f (u) is that element;

(3) If #2’s topmost indifference set I2 in the restricted ordering has
more than one element, look at #3’s ordering restricted to I2; if
that restricted ordering has a topmost alternative, f (u) is that
element; and so on.

This construction is driven by the following idea: If I1 contains
three or more alternatives and if f on the domain restricted to
having #1’s ordering fixed at its value at u has a range of more
than three elements, Arrow’s theorem applies again and requires a
dictator on I1. But not only might I1 contain only two alternatives,
but even when it contains more than two, the range of f might be
only two alternatives for fixed ordering for #1. This observation
allows us to find an enormous lower bound for the number of
strategy-proof rules even when we require that f have full range.

Consider the following category of rules. Individual #1 is a
dictator. But there is a function that maps each subset S of more
than one alternative to a pair of alternatives {x, y} in S. Then, when
I1 = S, one of theM(n−1)−2 strategy-proof ruleswith range {x, y}
is applied, using the profile restricted to individuals {2, 3, . . . , n}.
Since there are 2m

− m − 1 subsets of more than one alternative,
there are at least

[M(n − 1) − 2]2
m

−m−1

strategy-proof rules. Form = 5, and n = 9, this is
(56, 130, 437, 228, 687, 557, 907, 785)26 ≈ 10591.

There is another interesting connection between the Dedekind
numbers and strategy-proof social choice. Although there are not
explicit formulas for M(n) or even exact calculations for m > 8,
there are a variety of established estimates, e.g.,

M(n) > 2


n
xn/2y


where the right-hand side counts the antichains made up of
coalitions of size ⌊

n
2⌋, the greatest integer not exceeding n

2 . This
inequality already illustrates the rapid increase in the number
of strategy-proof rules with n. Korshunov (1981) has established
more accurate estimates. Zaguia (1993) observes that the main
idea behind Korshunov’s estimates is that almost all antichains
are contained in the union of the collections of the middle three
sizes of subsets of X . Thus for most strategy-proof rules, most of
the minimal winning coalitions are close to the minimal winning
coalitions for simple majority voting.
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