
SIAM J. DISCRETE MATH. c© 2011 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 280–305

WHEN DOES A CURVE BOUND A DISTORTED DISK?∗

JACK E. GRAVER† AND GERALD T. CARGO†

Abstract. Consider a closed curve in the plane that does not intersect itself; by the Jordan–
Schoenflies theorem, it bounds a distorted disk. Now consider a closed curve that intersects itself,
perhaps several times. Is it the boundary of a distorted disk that overlaps itself? If it is, is that
distorted disk essentially unique? In this paper, we develop techniques for answering both of these
questions for any given closed curve in the plane.
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1. Introduction. The problem of when the boundary of a distorted disk
uniquely determines that disk has been considered in several contexts. As a com-
binatorial problem, it arose naturally in an investigation of graphite fragments by
Guo, Hansen, and Zheng (GHZ) [6]. Graphite is one of the crystalline forms of car-
bon. The carbon atoms form in hexagonal rings, which are attached to one another
along edges in such a way as to form “regions,” each of which can be pictured as a
connected, finite union of closed hexagons in the hexagonal tessellation of the plane.
We call such a “region” a simple graphite fragment if its boundary is a simple closed
curve, as in Figure 1. One can describe a counterclockwise tour of the boundary of a
simple graphite fragment by a cyclic sequence of right (R) and left (L) turns. Thus, the
sequence of R’s and L’s (the boundary code) uniquely determines the boundary of the
fragment and the fragment itself, up to a congruence of the tessellation.
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Fig. 1.

To visualize a general graphite fragment think of constructing it in space by glu-
ing together hexagonal tiles edgewise. As the fragment is being constructed, it may
eventually turn around and build underneath itself. Such a fragment projects onto a
region of the hexagonal tessellation of the plane that overlaps itself. The boundary
sequence uniquely determines the boundary of this overlapping region, up to a con-
gruence of the tessellation. But, does it still uniquely determine the fragment itself? In
their paper, GHZ answered this question in the negative. They produced the simplest
example of two nonisomorphic graphite fragments with the same boundary code. We
sketch these fragments side by side in Figure 2. When projected onto the hexagonal
tessellation of the plane, these fragments are self-overlapping and hard to interpret;
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Fig. 2.

hence, we have elongated some of the hexagons to eliminate the overlappings. Start-
ing with a left turn at the vertex labeled a and moving counterclockwise around the
fragment, one easily sees that, in both cases, the boundary code is: LLRL RLLR LLRL

RRRR RRLR LLRL LRLL RLLR LRLR LLRL LRLL RLLR LRRR RRRL RLLR LLRL

LRLL RLRL RLRL. It is easy to see that the two fragments are not isomorphic: the
configuration in the left-hand fragment consisting of the 9 hexagons indicated by the
dots has no counterpart in the right hand fragment.

Brinkmann, Friedrichs, and von Nathusius [3] generalized the graphic frag-
ment problem to what they called (m, k)-patches (m, k ≥ 3). These are fragments
constructed by gluing regular m-gon tiles together with exactly k tiles meeting at
each interior vertex and at most k − 1 tiles meeting at any boundary vertex. Each
(m, k)-patch has a natural projection into the (m, k)-tessellation of the euclidean
plane, hyperbolic plane, or sphere. Graver [5] then proved that if an (m, k)-patch is
not uniquely determined by its boundary, then some polygon is covered three or more
times by the projection of the patch onto the corresponding (m, k)-tessellation.

So far we have considered the following question: Given a fragment, is there an-
other nonisomorphic fragment with the same boundary code? We could add a question
and ask, Given a boundary code, is there a fragment with that boundary code?
Furthermore, in view of the Brinkmann, Friedrichs, and von Nathusius generalization,
it is natural to go one step further and formulate continuous versions of these ques-
tions. Actually, these continuous versions have been studied extensively as the simplest
case in immersion theory. So that we can appreciate on an intuitive level the continu-
ous versions of the two questions just posed, we shall now proceed very informally and
postpone formal, technically correct definitions and statements until the next section.

A continuous function φ : S → T from a topological space S into a topological
space T is a local homeomorphism if, for each point s ∈ S, there exists a neighborhood,
N , of s so that the restriction of φ to N is a homeomorphism of N onto φ(N). We may
think of an immersion as a local homeomorphism with some additional smoothness
requirements. Let D denote the open unit disk in R

2, D its closure, and C = D −D
its boundary. We consider two questions.
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Question 1. If ζ is an immersion of C into R2, can ζ be extended to an immersion
δ : D → R2?

Question 2. If the extension δ requested above exists, is it unique up to an
equivalence?

Immersions δ : D → R
2 and δ′ : D → R

2 are equivalent if there exists a homeo-
morphism β : D → D such that δ ◦ β = δ′.

Of course, an immersion ζ of the circle C can always be extended to a continuous
function δ from D into R2. For example, map each horizontal segment of the disk
linearly onto the (possibly degenerate) segment joining the images of its endpoints.
The condition that the extension δ be an immersion precludes “folding” and “twisting”
as pictured in Figure 3 below.
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Fig. 3.

In the next section, we trace the early history of the immersion problem. We
outline the solutions due to Titus and to Blank in section 3. Both of their solutions
to the immersion problem are combinatorial in nature. Rather than give another
combinatorial solution to this problem, our approach is to identify an equivalent purely
graph-theoretic problem. Specifically, in section 4, we reformulate the questions in
terms of graph theory. Section 5 is devoted to a solution of the reformulated, graph-
theoretic problem. This approach has several advantages. For example, it enables us
to identify several easy-to-check necessary conditions for the existence of an extension.
This solution also has the 3-cover theorem as a corollary. Finally, this approach easily
extends to the formulation of and a solution to the analogous problem for an immersion
of the circle in the sphere (section 6).

2. A short history of the immersion problem. A special case of a slightly
modified version of Question 1 was posed by Picard [9] who wanted to extend the
Schwarz–Christoffel theorem in conformal mapping theory to the case of nonsimple
polygons. Various authors then posed and solved a continuous version of Picard’s
question.

Before we can discuss these earlier works, we must introduce some additional
terminology. A function ζ : C → R

2 is a regular representative of a closed curve if
it has a continuously turning, nonzero tangent vector, d

dθ ζ(e
iθ). (Some authors refer

to a regular representation as an immersion.) A point p in the image of ζ is said to
be a simple crossing point if p has exactly two preimages and the associated tangent
vectors are linearly independent. A regular representative of a closed curve is said to be
normal if it has a finite number of simple crossing points and every other point in the
image has just one preimage. In investigating certain extension questions, Whitney [14]
proved that, without loss of generality, attention can be restricted to normal regular
representations. Specifically he showed that, given a regular representation ζ, one can
obtain by means of an arbitrarily small alteration a normal regular representation
ζ∗ such that the answers to our two questions are exactly the same for ζ∗ and ζ.
For example, the complex function ζ(z) = z2 on C is regular but not normal, while
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ζ∗(z) = z2 − εz (for each arbitrarily small positive number ε) is normal on C; by
Whitney’s result answering our questions for ζ∗ will give us answers for ζ.

Two regular representations ζ1 and ζ2 are equivalent if there exists a sense-
preserving homeomorphism φ of C onto C such that ζ2 = ζ1 ◦ φ and d

dθφ(e
iθ) is

continuous and nonzero. A regular curve is defined to be an equivalence class of regu-
lar representations. The problems investigated in this paper are of such a nature that
any representation can be replaced by one equivalent to it. However, since the nota-
tion and language become too cumbersome with equivalence classes, we will usually
use representations and replace them when desired.

It is easy to give a heuristic argument that it is reasonable to restrict our attention
to normal curves. If two segments of C are mapped by ζ onto the same segment of
the image curve, we can alter ζ slightly so that the images of the two segments are
distinct or have a simple crossing. Furthermore, this alteration can be carried out
simultaneously on all extensions of ζ to the entire disk. Hence the answers to the
questions “Is there an extension of ζ to the entire disk, and if so, is it unique?”
remain unaltered. We can also use such simultaneous alterations to further simplify
the curve by replacing each multiple crossing at a point by several simple crossings,
again, without changing the answers to our questions. We illustrate these alterations in
Figure 4. After Whitney’s paper, all investigators have restricted their investigations
to normal regular functions, and so shall we.
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Fig. 4.

If we apply this simplifying process along with smoothing to the boundary of the
GHZ example, we get a curve like the one pictured in Figure 5. At this point we
should observe that the fact that the two fragments in Figure 2 are not isomorphic as
graphs does not immediately imply that the the corresponding continuous extensions
of the smoothed boundary code are not homeomorphic. But, as we will eventually
prove, they are not homeomorphic. We will use this curve throughout the paper to
illustrate the techniques and results.
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Much of immersion theory involves higher-dimensional spaces and is quite ab-
stract. However, initially many important results were obtained in the very simple
setting where one considers a normal presentation ζ : C → R

2 and asks if ζ has a
continuous extension δ : D → R2 such that δ|D is described by a specified member of
the following list:

(i) interior mapping with no branch points,
(ii) locally homeomorphic mapping,
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(iii) immersion,
(iv) locally diffeomorphic mapping,
(v) analytic (i.e., holomorphic) function with no critical points.

(Some authors replace (i) by “(i′) interior mapping” and study the branch points.)
By definition, a function mapping D into R

2 is interior if it is continuous, open
(i.e., maps each open subset of D onto an open subset of R2), and light (i.e., the
preimage of any point is totally disconnected). An immersion is a C1 mapping that
has maximal rank at each point of D; in the present setting, the inverse mapping
theorem implies that an immersion is a locally diffeomorphic mapping; that is, condi-
tions (iii) and (iv) are equivalent. Since the square of the modulus of the derivative of
a holomorphic function is equal to the Jacobian determinant of the induced transfor-
mation, condition (v) entails condition (iv). In summary, each condition entails the
previous condition, and conditions (iii) and (iv) are equivalent.

Titus [13] calls a normal representation ζ an analytic boundary if it has a continu-
ous extension to D whose restriction to D is analytic. He calls a normal representation
ζ an interior boundary if it has a continuous extension to D whose restriction to D
is interior and sense-preserving. A nonconstant analytic function F : D → R2 and
its complex conjugate F are both interior. Moreover, F is sense-preserving and F is
sense-reversing. The composition of an analytic function and a homeomorphism is an
interior function. From Stöılow’s theorem [13, p. 45] and the classification theorem in
the theory of Riemann surfaces, one can prove that if F : D → R

2 is sense-preserving,
interior, and bounded, then there exists a sense-preserving homeomorphism H of D
onto D and an analytic function W : D → R2 such that F = W ◦H .

About 1948 Loewner [8] suggested the following problem.
Problem I (immersion). Given a normal representation ζ, find necessary and suf-

ficient conditions that ζ be an interior boundary.
In 1961 Titus [13] gave a complete answer, from the point of view of combinatorial

topology, to Loewner’s problem. In 1967 in his dissertation Blank [2] (cf. 11) gave a
complete solution in terms of combinatorial invariants of the related problem for
immersions.

As noted above, an immersion is an interior mapping (without branch points).
Moreover, Jewett [7, Theorem 3, p 111] proved that if a normal representation ζ has
a continuous extension to D whose restriction to D is an interior mapping without
branch points, then ζ has a continuous extension to D whose restriction to D is an
immersion. So Blank solved Problem I in the case where branch points are excluded. In
summary, Problem LH below is equivalent to Problem I if branch points are excluded.

Problem LH (local homeomorphism). Given a normal representation ζ, find nec-
essary and sufficient conditions where ζ has a continuous extension to D whose re-
striction to D is locally homeomorphic and sense-preserving.
As Titus [13] points out, the theorem stated just before Problem I in conjunction with
Carathéodory’s extension theorem yields what follows.

Theorem 1. Let ζ be an interior boundary having F as its extension to D. Then
there exist a sense-preserving homeomorphism H of D onto D and a continuous func-
tion W : D → R2 such that W |D is analytic and F = W ◦H.

This theorem unleashes the power of a strong version of the argument principle
when one is dealing with interior boundaries. It also shows that every interior bound-
ary is equivalent to an analytic boundary. In that sense, Problem I is the same as
Problem LH except that in the former problem the extension is permitted to have
branch points (locally topologically equivalent to the power mapping zm). In other
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words, in Problem LH the derivative of the analytic function in question is not per-
mitted to ever equal zero, whereas in Problem I the derivative is permitted to have
zeros in D. Local homeomorphisms are easy to construct. Simply let p(z) =

∫ z

0
q(ζ)dζ,

where q is any polynomial whose zeros lie outside D.

3. The results of Titus and Blank. Titus approached the problem by trip-
licating a segment of the curve between two crossing points or vertices and splitting
the curve into two simpler curves. In Figure 6, we illustrate the cut, as Titus called
it, at the segment from a through c to e. Titus then proved that the curve S bounds
a distorted disk if and only if each of the two curves S1 and S2 of any cut bound
a distorted disk. In our example, S1 clearly bounds a distorted disk, and it is not
too hard to see that S2 does too. Titus also proved that one can always find a cut
so that the curves S1 and S2 are both simpler (have fewer crossing points) than S.
The problem can then be solved inductively. Titus did not consider the uniqueness
question.
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Both the existence and the uniqueness problems were considered by Blank in his
dissertation [2] (cf. 11). He also used an inductive approach cutting the curve into
two or more simpler curves. However, he defined his “cuts” differently. He starts by
selecting a point interior to each region and drawing disjoint rays, one from each of
these points, satisfying the following two conditions:

(i) The rays do not passes through any of the crossing points of the curve;
(ii) No ray intersects any of the segments between two crossing points in more

than one point.
Blank first proves that the original curve can always be redrawn so that this

construction can be carried out. In Figure 7, we have drawn such a family of rays for
our example.
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Blank labeled these rays with the letters from an alphabet and constructed a word
on this alphabet as follows: select a noncrossing point on the curve (for example, the
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point labeled 1) and then traverse the curve in the counterclockwise direction listing
the ray labels as we encounter them; specifically, if the ray crosses the curve from left
to right, we simply list its label, and if it crosses from right to left, we list the inverse
of its label. We may eliminate the artificial choice of starting point by thinking of this
sequence of letters and their inverses as a circular sequence. The resulting circular
sequence is called the “Blank word” of the curve and the given family of rays. For our
example we have

vutsq−1utsrqpu−1sqp.

A letter and its inverse correspond to an “acceptable cut” if neither of the two sub-
words bounded by this pair of symbols contains an unmatched inverse. For example,
q−1 and the first q yield the acceptable cut

q−1utsrq and qpu−1sqpvutsq−1.

Continuing, we dissect the second subword to get

q−1utsrq, u−1sqpvu, and utsq−1qpu−1.

These three subwords correspond to the dissection of the original curve into three
simple (non-self-intersecting) curves as indicated by the dashed lines above in Figure
7 and pictured in Figure 8.

�
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��
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utsq−1qpu−1

�
�

q−1utsrq

Fig. 8.

Blank then describes an equivalence relation on all decompositions of the initial
word corresponding to the equivalence relation on extensions defined above. A second,
nonequivalent decomposition is listed below:

qpvutsq−1, utsrqpu−1, and uu−1sqq−1.

One of the more difficult things that Blank had to do was to show that his final
conclusions were independent of the initial selection of a family of rays.

In [12], Shor and Van Wyk discuss the algorithmic aspects of the Blank approach
and then modify that approach developing efficient algorithms for deciding (1) whether
or not the curve has an interior, and (2) exactly how many “different” interiors are
possible. The also conjectured that if no region is covered more than twice, then all
interiors are equivalent. We verify their conjecture in Corollary 3.2.

4. The graph-theoretic formulation. Viewing the GHZ example, Figure 5,
we cannot help but observe that the actual shape of the curve is irrelevant as long as
the sequence of crossings is preserved. This was formally proved by Titus (Theorem 3
in [13]). Thus, the essential features of our curve are really properties of the embedded
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plane multigraph that it determines. Our approach to the problem is based on this
observation. Hence, we proceed to formulate our questions in this graph theory setting.

Let the normal curve S be the image of the immersion ζ. The counterclockwise
orientation of C gives an orientation or direction to the curve S. With this in mind,
we define directed plane multigraph �Γζ = (V, �E, F ) as follows: the vertex set consists
of the crossing points of the curve S, the edge set is identified with the directed arcs of
S joining these points, and the faces correspond to the regions “cut out” by the curve.
In the GHZ example, Figure 9, there are six vertices, {a, b, c, d, e, f}, eight faces, and
12 edges including multiple edges joining a and f and loops at b and e.
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Now suppose that ζ may be extended to an immersion δ of the entire closed disk
D. Using our intuitive approach, we visualize D as a distorted disk in 3-space with
its boundary C projecting down onto S in the plane. For each vertex v ∈ V , let
{v0, v1, . . . } denote the collection of points on D that project down onto v, and let
V̂ denote the collection of all of these points. Intuitively, the preimage of each arc
of S consists of one arc on C and perhaps several disjoint copies interior to D on
other levels. These “lifted” arcs and the “lifted” vertices form a graph drawn on the
disk D. The regions of D cut out by this graph plus an outer face define the plane
graph Φδ = (V̂ , Ê, F̂ ). We illustrate this lifting construction for the GHZ example in
Figure 10, which includes the lifted graphs from two different (nonequivalent) exten-
sions of ζ.
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Conversely, given an immersion ζ with image S and associated directed multi-
graph �Γζ as above and assuming that we can construct a “covering graph” Φ, we
could then build and extension δ of ζ by piecing together homeomorphisms between
the faces of Φ and the corresponding faces of �Γζ . Intuitively then, the disk immer-
sion problem can be reduced to a graph theory problem. We now wish to put this
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equivalence on sound footing. We start by developing the graph theory we need to do
this.

In this intuitive overview of our plan of attack, we called Φδ a “covering graph” of
�Γζ . It is, in fact, not a covering graph; the problem comes with the outside face. If Φδ

were a cover graph of �Γζ , the outside face of Φδ would have to be mapped onto some

face of �Γζ , and the outside face of �Γζ would have to be the image of some face of Φδ.
Neither of these requirements can be met. So while the standard definitions and results
from the theory of graph coverings may be used as a guide, we will have to develop
a specialized version of this theory to meet our needs. To avoid confusion between
standard covering theory and our variation, we shall introduce different terminology
adapted from the literature of mathematical chemistry.

A patch (a directed patch), Φ = (V,E, F, �B) (�Φ = (V, �E, F, �B)), is obtained
from a (directed) 2-connected, plane multigraph (loops and multiple edges permitted)

(V,E, F ′) ((V, �E, F ′)) by deleting the outside face and attaching its directed bound-

ary �B oriented counterclockwise around the rest of the graph (clockwise around the
outside face itself). Requiring a plane multigraph without loops to be 2-connected
is equivalent to requiring the boundary of each face to be an elementary circuit.
Hence, �B and the boundaries of the faces of the patch Φ = (V,E, F, �B) are all ele-
mentary circuits when the loops are deleted. The technical problem caused by loops
can be observed in Figure 10. We also note at this point that, in a directed patch
�Φ = (V, �E, F, �B), the directions assigned to edges in the boundary by �E and �B need
not agree.

An immersion α of the directed graph �Δ = (U, �B) onto the directed graph �Γ =

(V, �E) is a pair of functions using the same symbol such that α : U → V is onto,

α : �B → �E is a bijection, and all incidences and directions are preserved. By a directed
Euler circuit for �Γ = (V, �E), we mean a directed elementary circuit �Δ = (U, �B) and

an immersion α of �Δ onto �Γ. If in addition, �Γ is imbedded in the plane, we may
choose to require that, in traversing the image of circuit in �Γ, one leaves each vertex
by the edge opposite from the one along which it entered that vertex. Since a graph
that admits an Euler circuit must have only vertices of even degree, the “opposite”
edge is well defined. An Euler circuit satisfying this additional requirement is called
a straight-through Euler circuit. Straight-through paths and circuits were defined and
studied by Pisansky, Tucker, and Zitnik [10].

We are now able to define the combinatorial analogue of a normal curve given by
a normal immersion of the unit circle. By a normal patch we shall mean a directed
patch �Γ = (V, �E, F, �A) such that

(i) each vertex of �Γ has degree 4,

(ii) �Γ admits a straight-through Euler circuit �Δ = (U, �B).
Let ζ be a normal immersion of the unit circle C into R2 with the curve S as

its image, directed by the counterclockwise orientation of C. Above, we introduced
the directed plane multigraph �Γζ = (V, �E, F ) with the collection of crossing points of
S as its vertex set V , the arcs joining the crossing points as its edge set E, and the
connected components of R2 − S as its faces. If we redefine F to be all faces except
the outside face and include �A, the oriented boundary of the outside face, we have
the directed patch �Γζ = (V, �E, F, �A). Since ζ is a normal immersion, each vertex of
�Γζ = (V, �E, F, �A) has degree 4 and is the image of exactly two points on the unit

circle C. Let U denote the 2|V | preimages of the points in V , and let �B denote the
ordered pairs of consecutive points of U in the counterclockwise orientation of C.
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Then �Δ = (U, �B) is a straight-through Euler circuit for �Γζ . Hence conditions (i) and

(ii) above are satisfied, and �Γζ is a normal patch—the normal patch of ζ.

An isomorphism β of a patch Φ = (V,E, F, �B) onto a patch Φ∗ = (V ∗, E∗, F ∗, �B∗)
is a collection of bijections (all using the same symbol): β : V → V ∗, β : E → E∗,
and β : F → F ∗ such that

(i) all incidences are preserved;

(ii) the restriction of β to �B is an orientation preserving bijection onto �B∗.
An immersion α of a patch Φ = (V ′, E′, F ′, �B) onto a normal patch �Γ =

(V, �E, F, �A) is a collection of onto functions (all using the same symbol): α : V ′ → V ,
α : E′ → E, α : F ′ → F such that

(i) all incidences are preserved;

(ii) α restricted to (U, �B), where U is the set of vertices on the boundary, is the

straight-through Euler circuit for �Γ;
(iii) for each v′ ∈ V ′, α restricted to v′ and the set of edges and faces incident

with v′ is one-to-one and onto;
(iv) for each f ′ ∈ F ′, α restricted to f ′ and the set of edges incident with f ′ is

one-to-one and onto.1

We say that the Φ is a covering patch of the normal patch �Γ if there is an immersion
α of Φ onto �Γ. The patches in Figure 10 are covering patches for the normal GHZ
patch pictured in Figure 5. Two covering patches Φ and Φ∗ of �Γ given by immersions
α and α∗, respectively, are equivalent if there exist a isomorphism β : Φ → Φ∗ so
that α∗β = α on the boundary, �B, of Φ. The covering patches in Figure 10 are
nonequivalent: there is no patch isomorphism between them that fixes the boundary.

Let �Γ = (V, �E, F ) be any directed multigraph embedded in the plane. By a flag

in �Γ we mean a triple (v, e, f) consisting of a vertex, edge, and face all incident. If as
one moves from v along e (regardless of the orientation of e) f is on the left (right),
we say that (v, e, f) is a left-hand flag (right-hand flag).

Lemma 1.

(i) Patch isomorphisms and immersions preserve flag orientation and the cyclic
orientations of edges around each vertex and face.

(ii) If a normal patch �Γ = (V, �E, F, �A) admits a covering patch and if the direc-

tions of �E and �A agree on one edge, then they agree on all boundary edges.
Proof. Let α be an isomorphism of the patch Φ = (V ′, E′, F ′, �B) onto the patch

Φ∗ = (V ∗, E∗, F ∗, �B∗) or immersion of Φ = (V ′, E′, F ′, �B) onto the normal patch
�Γ = (V, �E, F, �A). Consider a left-hand flag (v′, e′, f ′) in Φ with the flag (v, e, f) as its

image (under α) in Φ∗ or �Γ. Since α is one to one and onto on the edges and faces
incident with v′ and preserves incidences, the counterclockwise ordering of edges and
faces around v′ is either preserved or reversed by α, as pictured in Figure 11. It follows
that all of the flags on v′ have their orientations preserved by α or all of the flags on
v′ have their orientations reversed by α.

Next consider the right-hand flag (w′, e′, f ′), where w′ is the other endpoint of e′.
Clearly, the orientation of (w′, e′, f ′) and all of the flags at w′ are preserved (reversed)
by α if and only if the orientation of (v′, e′, f ′) is preserved (reversed) by α. It follows
that, since patches are connected, either the orientations of all flags are preserved by
α or the orientations of all flags are reversed by α.

1Complete parallelism between conditions (iii) and (iv) is not possible since a nonloop edge in

the boundary of a face of Φ may be mapped onto a loop in �Γ.
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Now let e′ = (v′, w′) be a directed edge in �B that maps onto the directed edge

e = (v, w) in �B∗ or onto the directed edge e = (v, w) in �A. Since e′ is on the boundary
of Φ′ and oriented counterclockwise around the patch, it bounds only one face f ′, and
the flag (v′, e′, f ′) is a left-hand flag. Similarly, e bounds only one face f , and the
flag (v, e, f) is a left-hand flag. But then α must map f ′ to f and the left-hand flag
(v′, e′, f ′) to the left-hand flag (v, e, f). Since the orientation of one flag is preserved
by α, the orientation of all flags and the cyclic orientation around all vertices are
preserved. In particular, each flag (v, e, f) on the boundary �A is the image of a left-
hand flag and therefore must also be a left-hand flag. But then the direction assigned
to e by �A and assigned to its preimage in �B are the same, and so the directions
assigned to e by �A and by �E are the same. Finally, if the orientations of all of the
flags containing the vertex v′ (face f ′) are preserved by α, then the cyclic orientation
of the edges around v′ (bounding f ′) must be preserved by α.

The main result of this section is what follows.
Theorem 2. Let ζ be a normal immersion of the unit circle C into R2. Then

ζ admits an extension to an immersion δ of the closed disk D into R2 if and only
if the patch �Γζ admits a covering patch Φδ. Furthermore, ζ admits m nonequivalent

extensions if and only if �Γζ admits m nonequivalent covering patches.
Before we prove this result, we introduce some notation that we will then use

throughout the rest of the paper. Let ζ be a normal immersion of the unit circle C
into R2, and let �Γζ = (V, �E, F, �A) be the normal patch associated with S the image

curve of ζ. By definition, the boundary of any covering patch for �Γζ must be its

straight-through Euler circuit. Let �Δ = (U, �B) be the straight-through Euler circuit

for �Γζ . For each vertex v ∈ V , there are two vertices in U that map onto v. We label
them v0 and v1 so that the image of the edge leaving v1 follows the image of the edge
leaving v0 in the clockwise ordering of the edges incident with v. We illustrate this
in Figure 12 (left) and then with the GHZ example. Given the orientation induced

on the edges of �Γζ by �B, the two edges leaving a go to c and f . Since the edge
going to f precedes the edge going to c in the clockwise ordering of the four edges
incident with a, the initial vertex of the preimage of the a-f edge is label a1 and
the initial vertex of the preimage of the a-c edge is label a0. The remaining vertices
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in U are labeled in the same way. We will refer to this as the canonical labeling of
�Δ = (U, �B).

It is interesting to note that the map �Γ = (V, �E, F ′) (�Γζ with the outside face

reincluded) is uniquely determined as a map on the sphere by the directed map �Δ.

One simply starts by picking any edge (xi, yj) of �Δζ and drawing its image (x, y) in
the plane. Then the next edge (yj , zk) is drawn as (y, z) and indicating the direction
in which the curve will cross itself at y by an arrow: left to right if j = 0; right to left
if j = 1. One continues in this way until a vertex label is repeated with the second
subscript at which time one takes care to draw the curve so that it crosses itself in
the appropriate direction. One continues drawing the segments in order. The fact that
the crossings can always be made in the correct direction follows from the existence
of S. (An arbitrarily labeled circuit may not correspond to an actual curve.) The only
problem with this drawing is that any face could turn out to be the outside face. This
fact that the crossing sequence uniquely determines the spherical map was first noted
by Adkisson and MacLane [1]. We now turn to the proof of the main result of this
section.

Proof. Let ζ be a normal immersion of the unit circle C into R2 with the nor-
mal curve S as its image and �Γζ = (V, �E, F, �A) as the corresponding normal patch.

Assume that Φ = (V ′, E′, F ′, �B) is a covering patch for �Γζ = (V, �E, F, �A) given by
the immersion α. Since the union of the vertices, edges, and faces of the patch Φ is
homeomorphic to a disk, we can, without loss of generality, assume that Φ is embed-
ded in the unit disk so that the vertices of Φ on its boundary (U, �B) is the canonical

straight-through Euler path for �Γζ . We may assume that the vertices of Φ in U have

been assigned the canonical labels. Hence each vertex v of �Γζ has the same two preim-
ages under ζ−1 and α−1 on the boundary of Φ (labeled v0 and v1). All other preimages
of v under α−1 lie interior to the disk, and we may assume that they are v2, . . . . We
start to construct δ, our extension of ζ to the entire disk by defining δ = ζ on the
boundary and defining δ(vi) = v for each interior vertex of Φ.

By the usual meaning of the term “drawing” the curve of the drawing correspond-
ing to an edge is a homeomorphic image of the unit interval. Hence, the interior of
the curve corresponding to a nonboundary edge (ui, vj) of Φ is homeomorphic to the

open arc on S corresponding to the edge (u, v) in �Γζ . Note that edges of the form

(vi, vj) map onto loops in �Γζ . We have extended ζ to a local homeomorphism of the
drawing of the graph (V ′, E′) onto the curve S. In particular, the boundary of a face
f of Φ is mapped by δ onto a closed “subcurve” of S. But since Φ is a covering patch
for �Γζ , that subcurve actually bounds the region, Rf , of R

2 − S corresponding to the

face of �Γζ on which f is projected. Then δ restricted to the boundary of the disk-like
region R′

f , corresponding to f in our drawing of Φ, is mapped onto the boundary
of the disk-like region Rf . We may then extend δ to a homeomorphism between the
interiors of these regions. Carrying out this extension for all faces yields the local
homeomorphism δ, the required extension of ζ to the entire disk. If Φ and Φ′ are
equivalent covering patches for �Γζ , one easily extends the patch isomorphism to a
homeomorphism of D to itself that fixes C pointwise. Thus the extensions, δ and δ′,
constructed from Φ and Φ′ are also equivalent.

Now let ζ be a normal immersion of the unit circle C into R2 with the normal
curve S as its image and �Γζ = (V,E, F, �A) as the corresponding normal patch. As-
sume that ζ has an extension, the immersion δ, mapping the entire disk into R2. We
must use δ to construct a covering patch Φ = (V ′, E′, F ′, �B) for �Γζ . We start our
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construction with the canonical straight-through Euler circuit �Δ = (U, �B) (as pic-
tured in Figure 12). Before we construct the remaining vertices and edges of Φ, we
construct a special collection of neighborhoods for D and its image.

Since δ is a local homeomorphism, we have for each point x ∈ D a neighborhood
Nx so that δ restricted to Nx is a homeomorphism into R

2. It will be convenient to
alter these neighborhoods so that the neighborhoods for all preimages of the same
point p ∈ R2 have the same or “corresponding” images under δ. If p does not lie on
the curve S, then all preimages p0, p1, . . . , pt of p lie interior to the disk. Without loss
of generality, we may assume that the Npi are disjoint. Now let N = ∩t

i=0δ(Npi) and
then replace Npi by δ−1(N) ∩Npi . For points on S and, in particular, for the points
of self-intersection, a similar but more complicated-to-describe construction may be
employed to produce the “corresponding” neighborhood systems pictured in Figure
13. As indicated in Figure 13, points on the boundary have one or two “half-disk-
like” neighborhoods. Note that, for the points of self-intersection, we have used the
canonical labeling.
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Assume that we have replaced all of the Nx in D by these corresponding neighbor-
hoods. Since D is compact, its image under δ is compact, and a finite collection of the
image neighborhoods cover the image. The corresponding neighborhoods of this fam-
ily then cover D. We will call this a uniform collection of neighborhoods. So far in the
construction of Φ = (V ′, E′, F ′, �B), we have constructed the boundary and straight-

through Euler circuit (U, �B) with immersion maps α : U → V and α : �B → �E. For the
vertex set V ′, we simply take the preimages under δ−1 of the points of self-intersection
of S (the vertex set of �Γζ) and extend the immersion map already defined on U by
defining α(vi) = v for all vi.

Now select an edge (u, v) in �Γζ , and let S(u,v) denote the arc of S corresponding
to that edge. Using standard constructions, we may select a sequence of points p0 =
u, p1, . . . , pm−1, pm = v on S(u,v) and a corresponding sequence of neighborhoods
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from our uniform collection, N1, . . . , Nm, so that the subarc S(pi−1,pi) ⊂ Ni. Next,

select uk, any one of the points in D that is mapped onto u. Let M1 denote the
neighborhood in our uniform collection that contains uk and maps homeomorphically
onto N1. We proceed inductively to define Mi+1 as the neighborhood in our uniform
collection above Ni+1 that contains the preimage of pi that lies in Mi. Denote by Πi

the preimage of the arc S(pi−1,pi) in the neighborhood Mi. These short arcs match up

in the intersections of successive Mi, producing an arc in D joining uk to some vertex
vj above v - a lifting of the arc S(u,v). Each such lifting identifies an edge (uk, vj)
joining vertices in V ′, and E′ is the collection of all such edges. One easily checks that
boundary edges in �B are among the edges constructed in this way.

At this point, we have constructed an extension of the directed graph (U, �B) to

a graph (V ′, E′) with a drawing in D, that is, to a patch Φ = (V ′, E′, F ′, �B). It is
clear that the immersion map α : E′ → E defined by α((uk, vj)) = (u, v) and the
previously defined immersion map α : V ′ → V preserve the graph incidences. All that
remains is to extend α to the faces of Φ.

Let f ′ be a face of the patch Φ; let x′
1, e

′
1, x

′
2, . . . , e

′
k, x

′
m+1 = x′

1 be the boundary
circuit of f ′ ordered clockwise around f ′. We first note that as we trace out the bound-
ary of f ′, the images α(x′

1), α(e
′
1), α(x

′
2), . . . , α(e

′
k), α(x

′
1) trace out the boundary of a

face f in �Γ. However, before we can define α(f ′) to be f , we must exclude the possibil-
ity that as one traces the boundary of f ′ one actually traces the boundary of f several
times. Suppose that, for some k < m, α(x′

k) = u = α(x′
1) and α(e′k) = u = α(e′1).

Now cover this path in Φ from x′
1 to x′

k by a finite sequence of neighborhoods from
our uniform collection. The images of these neighborhoods under δ cover the entire
boundary of f . Now add sufficient neighborhoods from the collection to complete a
finite cover of f . Now think of the boundary of as a “loop” on u and slowly shrink it
back toward u in the face f . As the loop moves from a neighborhood on the boundary
to one of the added neighborhoods, select the lifted neighborhood in Φ that intersects
the boundary neighborhood in Φ and lift the loop to that neighborhood. Continuing
in this way, we maintain a curve in the face f ′ that maps onto the shrinking loop.
Once the loop is small enough to lie entirely in the single neighborhood containing u,
its lifted image, a path from x′

1 to x′
k must lie entirely in one of the neighborhoods

above u. We conclude that x′
k to x′

m, and we may define α(f ′) = f .
Finally, if δ and δ′ are equivalent extensions of ζ, then the equivalence home-

omorphism β : D → D yields a patch isomorphism between the covering patches
constructed from δ and δ′.

5. Constructing covering patches. Let �Γ = (V, �E, F, �A) be a normal patch.

Suppose that �Γ admits a covering patch Φ = (V ′, E′, F ′, �B) with the immersion α. It

follows from Lemma 1 that the orientation of �A and the straight-through Euler circuit
agree at every edge of the boundary �A. We may assign to each vertex v, edge e, and
face f of �Γ its multiplicity: μ(x) = |α−1(x)| for x = v, e, f . Consider any vertex of �Γ;
then α−1 consists of v0 and v1 on the boundary of Φ and perhaps several other points
{v2, . . . , vμ(v)−1} “interior” to Φ. By the property (iii) of the definition of immersion
and Lemma 1, the neighbors of each of the preimages of v are correctly pictured in
Figure 14. Note further that, with the labeling that we have adopted, some labels are
missing: d0 and e′1 among the lifted edges and g0, h0, k1, and h1 among the lifted
faces.

We observe that
(i) for each v ∈ V , μ(v) = max{μ(f) : f is incident with v};
(ii) for each e ∈ E, μ(e) = max{μ(f) : f is incident with e};
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(iii) if e ∈ E and f and g are the faces on the left and right of e as one moves
along the Euler circuit, then μ(f) = μ(g) + 1.

These observations enable us to compute the multiplicities of the covering patch
Φ directly for a normal patch �Γ. We start with the faces. Assign multiplicity 0 to the
outside face, and for any face f , let f0, e1, f1e2, . . . , em, fm be the faces and edges of
�Γ corresponding to a dual path from the outside face f0 to f = fm. Define μ(fi) to be
μ(fi−1) + 1 if fi is on the left of ei and to be μ(fi−1)− 1 if fi is on the right of ei. It

follows from our observations that whenever �Γ admits a covering Φ, the value of μ(f)
computed in this way is the multiplicity of f under this immersion and, therefore, is
independent of the choice of the dual path joining it to the outside face. Actually,
there is a straightforward graph theory argument that shows that μ(f) defined in this

way is well defined for any normal patch �Γ whether or not it admits a covering patch.
Let �Γ = (V, �E, F, �A) denote any normal patch, and let f be any face. Consider

two dual paths from o, the outside face to f . Consider one of these dual paths and
observe that the number of edges crossing the dual path from left to right minus the
number of edges crossing the dual path from right to left is the multiplicity assigned
to f by that path. Consider the dual circuit formed by following one of these paths
to f and returning to o by the other, as pictured in Figure 15. Then the multiplicity
assigned to f by these paths will be the same if and only if traversing this dual circuit
in either direction, the number of edges crossing the circuit from left to right equals
the number of edges crossing it from right to left.
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Assume that this dual circuit is an elementary circuit, as pictured in Figure 15,
and let W denote the collection of vertices it encloses. For each edge with an endpoint
w ∈ W add 1 if it terminates in w and -1 if it initiates at w. This sum is clearly 0
since the contribution at each vertex is two +1s and two −1s. On the other hand, each
edge crossing the dual circuit from left to right contributes 1 to this sum, each edge
crossing the dual circuit from right to left contributes -1 to the sum, and all other
edges contribute a +1 and a −1 to the sum. The argument is a bit more complicated
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if the dual circuit is not an elementary circuit, and that case is left to be worked out
by the interested reader.

So the depth-of-cover multiplicity function, μ(f), is well defined for the faces of

any normal patch �Γ. In Figure 16, we have computed μ for the faces of the GHZ
example. Once the function μ has been defined on the faces of �Γ, we extend it to the
vertices and edges by the equations in observations (i) and (ii) above. We note that if
�Γ is a normal patch and if μ(f) < 0 for some face, then �Γ does not admit a covering
patch.
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Let �Γ = (V, �E, F, �A) be any normal patch, and let μ denote its multiplicity func-

tion. If �Γ admits a covering patch, then that covering patch has μV =
∑

v∈V μ(v)
vertices, μE =

∑
e∈E μ(e) edges, and μF =

∑
f∈F μ(f) faces. Furthermore, these

numbers must satisfy Euler’s equation for planar maps: μV −μE +(μF +1) = 2. Now
if a covering patch exists, it has μV vertices; 2|V | of these have degree 3, and the rest
have degree 4. So the sum of the vertex degrees is 4μV − 2|V |, giving the equation
μE = 2μV − |V |. Substituting this into Euler’s formula and rearranging terms gives

μV − |V | = μF − 1. As we observed above, at any vertex v of �Γ, one of the incident
faces has multiplicity μ(v), two have multiplicity μ(v)− 1, and the remaining face has
multiplicity μ(v) − 2 (see Figures 14 and 17). Hence, the sum of the multiplicities of
the faces incident with v is 4(μ(v)−1). Now sum the face multiplicities times the face
degrees (ω(f)) to get

∑
f∈F

ω(f)μ(f) =
∑
v∈V

4(μ(v)− 1) = 4(μV − |V |) = 4(μF − 1) =

⎛
⎝∑

f∈F

4μ(f)

⎞
⎠− 4

or simply
∑

f∈F (4− ω(f))μ(f) = 4. We summarize these observations and computa-
tions and, for easy reference, include Lemma 1(ii) in Lemma 2 below.

Lemma 2. Let �Γ = (V, �E, F, �A) be a normal patch, and let μ denote its computed

multiplicity function. Then if �Γ admits a covering patch, the following conditions must
be met:
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(i) (orientation condition) the orientation of �A and the orientation of the

straight-through Euler circuit agree at every edge of the boundary �A;
(ii) (nonnegativity condition) all of the depth-of-cover multiplicities of the faces

of �Γ are nonnegative;
(iii) (Euler condition)

∑
f∈F (4 − ω(f))μ(f) = 4, where ω(f) denotes the degree

of the face f .
The conditions in Lemma 2 are relatively easy to check for a given patch; one

easily checks that each of these conditions is met by the GHZ example. This lemma
enables one to quickly eliminate from consideration many normal curves that do not
bound a disk. In Figure 18, we illustrate this with two very simple examples. The
normal patch based on the normal curve S1 violates conditions (i) and (ii) of Lemma
2, and while the normal patch based on the normal curve S2 satisfies conditions (i)
and (ii) of Lemma 2, it fails to meet the Euler condition.

�
� �

1 −1

S1 �

�

�

2

1

S2

(4− 1)× 2 + (4 − 2) × 1 �= 4

Fig. 18.

Suppose that we have a normal patch �Γ = (V, �E, F, �A) that satisfies all of the

conditions in Lemma 2. We would like to construct all possible covering patches for �Γ
or show that there are none. To do this we will closely follow the construction of the
covering patch given in the proof of Theorem 2.

Assume that �Γ = (V, �E, F, �A) is a normal patch that satisfies all of the con-
ditions in Lemma 2. We have already discussed how to construct the boundary
circuit �Δ = (U, �B). Furthermore, we can construct the vertices of any possi-

ble covering patch Φ = (V ′, E′, F ′, �B) by simply subscripting the vertices in V :
V ′ =

⋃
v∈V {v0, v1, . . . vμ(v)−1}. This gives the first of the immersion maps: α : V ′ → V

by α(vi) = v for all vi ∈ V ′. Now consider an edge e = (u, v) of �Γ. We know that
E′ must contain exactly μ(e) edges projecting onto e. However, as we noted above
(Figure 14), it may be the case that μ(u) > μ(e) or μ(v) > μ(e), and, in that case,
not every vertex among u0, u1, . . . uμ(u)−1; v0, v1, . . . vμ(v)−1 will be the endpoint of an
edge in E′. There are four cases to consider, and they are pictured in Figure 19.

We say that an edge e = (u, v) of the normal patch �Γ is of Type 00 if e is directed
from u to v by the directed Euler circuit and the directed Euler circuit crosses from
left to right at both u and v. In Figure 19, we have computed the relative multiplicities
of the faces adjacent to the endpoints of e (where h is at least 2). From these face
multiplicities, we then compute μ(u) = h, μ(v) = h + 1, and μ(e) = h. So, some
vertex above v is not the endpoint of an edge above e. The vertex labeled v1 lies on
the boundary �B and corresponds to a degree 3 vertex of Φ and the “missing” edge
corresponding to e. See Figure 13. Hence, in this case, the edges projecting onto e
have one endpoint in {u0, u1, . . . , uh−1} and the other endpoint in {v0, v2, . . . , vh}.
To satisfy condition (iii) of the definition of an immersion, we must insist that each
vertex among {u0, u1, . . . , uh−1} and {v0, v2, . . . , vh} is the endpoint of just one edge
above e. Hence the edges to be mapped onto e correspond to a matching or bijection
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Fig. 19.

between {u0, u1, . . . , uh−1} and {v0, v2, . . . , vh}. It is convenient to use the notation
σe to denote the bijection between the sets of subscripts of the relevant vertices above
the endpoints of e. Furthermore, in this particular case, the edge in the boundary B
mapping onto e goes from u0 to v0; so σe(0) = 0. We also note that the edge (u0, v0)

bounds only a face that projects onto the face of �Γ to the left of e; that is, the faces
adjacent to e on the side with the largest multiplicity.

Similarly, we define an edge e = (u, v) to be of Type 01 to denote if e is directed
from u to v by the directed Euler circuit and the directed Euler circuit crosses from left
to right at u and right to left at v. Here, the relevant matching is σe : {0, . . . , h−1} ↔
{0, . . . , h−1} with σe(0) = 1. An edge e = (u, v) is of Type 10 if e is directed from u to
v by the directed Euler circuit and the directed Euler circuit crosses from right to left
at u and left to right at v. Here, the relevant matching is σe : {1, . . . , h} ↔ {0, 2 . . . , h}
with σe(1) = 0. An edge e = (u, v) is of Type 11 if e is directed from u to v by the
directed Euler circuit and the directed Euler circuit crosses from right to left at both u
and v. Here, the relevant matching is σe : {1, . . . , h} ↔ {0, . . . , h− 1} with σe(1) = 1.

Suppose that we simply complete the definitions of the matching σe in some way
for every edge. We would have constructed a graph (V’, E’) that is an extension of

(U, �B) and has the required immersion functions α : V ′ → V and α : E′ → E. In
addition for each vertex vi ∈ V ′, there is a natural cyclic ordering of the edges around
vi, namely, the counterclockwise ordering of their images around v in �Γ. If we add the
condition that the resulting graph (V ′, E′) is connected, we may apply the Edmonds’
embedding technique [4] as follows.

Let (V,E) be any connected graph and assign to each vertex a cyclic ordering of the
edges with it as endpoint. Now construct the boundaries of the faces of an embedding
as follows: start with any initial vertex x1 and incident edge e1, move along the edge
to the other endpoint x2 and let e2 be the next edge in the cyclic ordering around
x2 after e1, and so on. Edmonds proved that this process will end with xh = x1 and
eh = e1 resulting in a directed circuit. He then proved that the set of directed circuits
produced in this way are the clockwise-oriented boundaries of the faces of an embedding
of (V,E) in some orientable surface.

With the Edmonds construction in mind, we require that the completions of the
definitions of the matchings above the edges satisfy the following conditions:
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(i) the resulting graph is connected;
(ii) the composition of the matchings as one traverses the boundary of a face of

�Γ is the identity matching.
We say that such a collection of bijections is acceptable. Condition (ii) implies

that the set of faces constructed by the Edmonds technique consists of one face with
boundary B and a collection F ′ of faces that map down to the faces of �Γ, giving the
final immersion function α : F ′ → F . Finally, we note that from the Edmonds result
we can only conclude that the surface on which Φ = (V ′, E′, F ′, �B) is embedded is
orientable. However, we started with a normal patch that satisfied the Euler condition
(Lemma 2(ii)). So the the vertex, edge, and face numbers of Φ satisfy the Euler
formula for a planar embedding, and we may conclude that Φ is actually planar. We
have proved part (i) of Theorem 3.

Theorem 3. Let �Γ be a normal patch.
(i) �Γ admits a covering patch if and only if it satisfies the conditions in Lemma

2 and admits an acceptable collection of bijections.
(ii) Two covering patchs Φ = (V ′, E′, F ′, �B) and Φ∗ = (V ′, E∗, F ′, �B), given by

the acceptable collections of bijections σe and σ∗
e , are equivalent if and only

if there exists a family of permutations πv : {v2, . . . , vh}, for each v ∈ V , so

that σ∗
e = πvσe = πu for each edge e = (u, v) ∈ �E.

Proof of Theorem 3 (ii). Given a covering patch Φ = (V ′, E′, F ′, �B) for �Γ =

(V, �E, F, �A), it is clear that simply permuting the indices of {v2, . . . , vh} for each v ∈ V
will result in an equivalent covering patch. Now suppose that the covering patchs
Φ = (V ′, E′, F ′, �B) and Φ∗ = (V ′, E∗, F ′, �B), given by the acceptable collections of
bijections σe and σ∗

e , are equivalent. Let α and α∗ denote the immersions of Φ and

Φ∗ onto �Γ, and let β denote the homeomorphism from Φ onto Φ∗. Since α = βα∗,
β must map the preimages of a vertex v onto the preimages of v, and since β must
fix the boundary, β simply permutes the sets of preimages in {v2, . . . , vh} for each
v ∈ V . �

We illustrate this result with the GHZ example.
We note first that a and f have multiplicity 2, while b, c, d, and e have multiplicity

3. Hence the vertices of any lifting are

{a0, a1, b0, b1, b2, c0, c1, c2, d0, d1, d2, e0, e1, e2, f0, f1}.
Next we note that the matchings for edges with multiplicities 1 ((a,f) and (f,a)) or 2
((d,a), (a,c), (b,b), (c,f), (f,d), and (e,e)) are all forced, as illustrated in Figure 20. In

that figure, we diagram the bijections around each of the seven inside faces of �Γ. For
each face, we list the vertices in clockwise order around the face, draw in the directed
edges, and list their types above them. Then, below the heavy horizontal line, we have
filled in the assignments that are required by the edge type as bold face arrows, and
any additional assignments that are then forced are indicated by lighter arrows. The
vertices that are relevant to the matchings around that face are circled.

It remains to discover just how many (if any) different ways that these forced
assignments may be completed to an acceptable collection of bijections. But first, we
verify that the assignments we claim to be forced are indeed forced. Consider the
top face of depth 1. Referring to Figure 19, we see that σ(f,a) maps {1} to {0}, and,
therefore, (f1, a0) is the only lifting of the edge (f, a). Next, σ(f,d) maps {0,1} to
{0,2}, and σ(f,d)(0) = 0 is mandated; hence σ(f,d)(1) = 2, giving (f0, d0) and (f1, d2)
as the two liftings of (f, d). Finally, σ(d,a) maps {1,2} to {0,1} with σ(d,a)(1) = 1
required; hence σ(d,a)(2) = 0, giving (d1, a1) and (d2, a0) as the two liftings of (d, a).
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These bijections restricted the circled indices (the indices relevant to the face under
consideration) compose the identity around this face. Considering the right-hand loop,
we have that σ(e,e) maps {1,2} to {0,2} and that σ(e,e)(1) = 0 is mandated; hence
σ(e,e(2) = 2, giving (e1, e0) and (e2, e2) as the two liftings of (e, e) and (e2, e2) as the
boundary of the lifting of this face. The arguments for the bottom face of depth 1 and
the left-hand loop are the same and result in the edges given in their diagrams. These
mandated and induced edges have been filled in on the diagrams for the faces with
multiplicities of 2 and 3, and we proceed to the problem of completing the bijections.

Now consider the right-hand face of depth 2 and the edge (c, e). We have two
options (c1, e0) and (c2, e2) or (c1, e2) and (c2, e0). But once this choice is made, the
matching above the edge (e, d) is forced by the condition that the composition of the
bijections around the face be the identity. So our two options for choice 1 become
the following:

Option 1A. (c1, e0), (c2, e2), (e1, d2), and (e2, d0);
Option 1B. (c1, e2), (c2, e0), (e1, d0), and (e2, d2).
Similarly, the left-hand face of depth 2 yields exactly two options:
Option 2A. (d1, b0), (d2, b2), (b1, c2), and (b2, c0);
Option 2B. (d1, b2), (d2, b0), (b1, c0), and (b2, c2).
We must now check which of these pairs of options work around the face of depth

3. If we select Option 1A and track the trajectory of b0, we conclude that we must
then select Option 2A. One easily checks that this pair of options work and yield
the covering patch in Figure 10 (left). If we select Option 1B and again track the
trajectory of b0, we conclude that we must select Option 2B. Again, one easily checks
that this pair of options work and yield the covering patch in Figure 10 (right). Finally,
since there are not enough indices above 1 to permute, these covering patches are not
equivalent.

It follows from our analysis as illustrated in Figure 19 that, in general, the match-
ing above every edge of multiplicity 1 or 2 is uniquely determined. Thus, if a normal
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curve S with maximum multiplicity 1 or 2 bounds a distorted disk, that disk is unique
up to equivalence. Hence, we have the continuous analogue to main result of [5].

Corollary 3.1. If the normal curve S bounds two distinct distorted disks, then
it must have some face with a multiplicity of at least 3.

When we apply the theorem to normal curves with maximum multiplicity of 2,
we are able to simplify the necessary and sufficient conditions for the existence of a
covering patch. Consider a piece of the curve containing an edge (u, v) bounding a
face of multiplicity 2, as pictured in Figure 21. We argue that the segment crossing
our segment at u must cross from left to right; otherwise the face labeled f would
have depth 3. Also the crossing at v must be from right to left; otherwise the face
labeled g would have depth 3. We conclude that (x, y) is of type [01]. Hence we have
no choice in defining the bijections: for every edge e of multiplicity 2, σe(0) = 1
and σe(1) = 0. Now consider the composition of matchings around any face of multi-
plicity 2. Each matching reverses the indices; hence composition will be the identity if
and only if the number of matchings is even, i.e., if and only if every face of multiplicity
2 has even degree.
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1

0

1

1

2

Fig. 21.

With the aid of Figure 21, we may simplify the Euler condition (condition (iii)

of Lemma 2). Let Fi denote the faces of �Γ of multiplicity i and include the outside

face in F0. Each vertex of �Γ is incident with one face in F0, one in F2, and two in F1.
This gives

∑
f∈F0

δ(f) =
∑

f∈F2
δ(f) = |V |, while ∑f∈F1

δ(f) = 2|V |. Plugging these
values into condition (iii) of Lemma 2 gives the equivalent condition

4|F1| − 2|V |+ 8|F2| − 2|V | = 4 or 2|F2|+ |F1| = |V |+ 1.

We may further simplify this condition by applying Euler’s formula directly to �Γ.
Since every vertex of �Γ has degree 4, | �E| = 2|V |, and by Euler’s formula

|V | − 2|V |+ (|F0|+ |F1|+ |F2|) = 2.

Combining these two equations to eliminate |F1|, we see that �Γ will satisfy condition

(iii) of Lemma 2 if and only if |F0| = |F2|+1 or the number of faces of �Γ of multiplicity

2 equals the number of internal faces of �Γ of multiplicity 0. We have proved the next
corollary.

Corollary 3.2. Let �Γ be a properly oriented normal patch with nonnegative
multiplicities (i.e., satisfying conditions (i) and (ii) of Lemma 2) and having maximum

multiplicity of 2. Then �Γ admits a covering patch if and only if
(i) the number of faces with multiplicity 2 equals the number of internal faces

with multiplicity 0.
(ii) all faces of �ΓS with multiplicity 2 have boundaries of even length.
Furthermore, if a covering patch exists, it is unique.
Applying Corollary 3.2 to the curves in Figure 22, we see immediately that both

curves give properly oriented normal patches with nonnegative multiplicities and that
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both satisfy condition (i) of the corollary. But only the curve on the right satisfies
condition (ii), and hence only the curve on the right bounds a distorted disk.
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6. Covering the sphere. Consider ζ : C → S
2, and let its image S be a normal

curve drawn on the sphere. Here there is no outside face, and so we can associate
with the directed curve the directed multigraph �ΓS = (V, �E, F ), where V is the set

of crossing points of S, �E, the directed arcs between crossing points, and F the
components of S2 − S. Suppose that ζ may be extended to an immersion δ : D → S2.

As in the planar case, this leads to a covering patch Φ = (V ′, E′, F ′, �B). The
development of the structure of covering patches for spherical multigraphs parallels the
above development to the structure of covering patches for patches. In the following
development, proofs that are parallel to the proofs of the corresponding planar result
are omitted; we concentrate on the few differences between and immersions into the
plane and immersions onto the sphere.

We start by making the following definitions. By a normal multigraph we shall
mean a directed, 2-connected, plane multigraph �Γ = (V, �E, F ) such that

(i) each vertex of �Γ has degree 4,

(ii) �Γ admits a straight-through Euler circuit �Δ = (U, �B).

An immersion α of a patch Φ = (V ′, E′, F ′, �B) onto a normal multigraph �Γ =

(V, �E, F ) is a collection of onto functions (all using the same symbol): α : V ′ → V ,
α : E′ → E, α : F ′ → F such that

(i) all incidences are preserved;

(ii) α restricted to (U, �B), where U is the set of vertices on the boundary, is the

straight-through Euler circuit for �Γ;
(iii) for each v′ ∈ V ′, α restricted to v′ and the set of edges and faces incident

with v′ is one to one and onto;
(iv) for each f ′ ∈ F ′, α restricted to f ′ and the set of edges incident with f ′ is

one to one and onto.
We say that Φ is a covering patch of the normal multigraph �Γ if there is an

immersion α of Φ onto �Γ.
With these slightly altered definitions, the proofs of Lemma 1 and Theorem 2 are

easily adapted to prove their spherical analogues.
Lemma 3. Patch immersions onto normal multigraphs preserve flag orientation

and the cyclic orientations of edges around each vertex and face.
Theorem 4. Let ζ be a normal immersion of the unit circle C into S2. Then

ζ admits an extension to an immersion δ of the closed disk D into S2 if and only
if the normal multigraph �Γζ admits a covering patch Φδ. Furthermore, ζ admits m

nonequivalent extensions if and only if �Γζ admits m nonequivalent covering patches.
So we now turn to the problem of constructing all covering patches for a given

normal multigraph on the sphere or showing that there are none. But before going
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any further we note that, because of the outside face in the planar case, only one
orientation of the curve S could possible lead to it bounding a distorted disk. That is
no longer true on the sphere. So we may wish to consider the possibility of reversing
the direction of S, that is, all directions in the normal multigraph �Γ = (V, �E, F ). We

will denote this reversed direction normal multigraph by �ΓR = (V, �ER, F ).
The first difficulty that we encounter on the sphere is in the computation of

the depth-of-cover multiplicities. In fact, the depth-of-cover multiplicities are not well
defined for the normal multigraph �Γ. The problem is that there is no obvious choice for
the outer face. Since there is no outer face, we simply pick some face and arbitrarily
assign it the multiplicity 0. Then moving from face to face as before, we compute
the depth-of-cover multiplicities for the remaining faces. The combinatorial argument
given earlier shows that these multiplicities are well defined. Also it is clear from that
argument that if we had started with p instead of 0, the resulting multiplicities can
be obtained by simply adding p to each of the multiplicities computed by starting
at 0.

Clearly the multiplicities assigned to �Γ so that the least multiplicity is 0 are
uniquely determined; we call these the canonical multiplicities for �Γ. The multiplicity
gap or simply gap for �Γ is g(�Γ), the maximum multiplicity among the canonical

multiplicities for �Γ. Now consider the canonical multiplicities for both �Γ and �ΓR.
Consider the same sequence of faces in �Γ and �ΓR. As one moves through this sequence,
multiplicities increase in �ΓR when they decrease in �Γ and decrease in �ΓR when they
increase in �Γ (see Figure 23 below). These observations lead to the following lemma.

Lemma 4. Let �Γ = (V, �E, F ) be a normal multigraph. Let μ : F → N, where N

denotes the nonnegative integers, be its canonical assignment of depth-of-cover mul-
tiplicities, and let μR : F → N be the canonical assignment of multiplicities for �ΓR.
Then

(i) if μ′ is any set of multiplicities for �Γ, then there is a constant c so that
μ′(f) = μ(f) + c for all f ∈ F .

(ii) �Γ and �ΓR have the same gap g,
(iii) μR(f) = g − μ(f) for all f ∈ F .
Next in this investigation for the sphere, using exactly the same proof, we get the

analogue to Lemma 2.
Lemma 5. Let �Γ = (V, �E, F ) be a normal multigraph, and let μ denote one of

its multiplicity functions. Then if �Γ admits a covering patch with these multiplicities,
the following conditions must be met:

(i) (nonnegativity condition) all of the multiplicities of the faces of �Γ are non-
negative;

(ii) (Euler condition)
∑

f∈F (4− δ(f))μ(f) = 4.
The conditions in Lemma 5 are relatively easy to check for a given patch;

one easily checks that each of the assignments of multiplicities in Figure 23 satis-
fies the first of these conditions but that the second condition is met only by the
assignment C.

Since we have some flexibility in choosing the multiplicities for a given normal
multigraph and its reverse, it is natural to ask how the sum in Lemma 5(ii) changes
as we change multiplicities. For the possible sets of multiplicities μ, we define the
function k(μ) =

∑
f∈F (4− δ(f))μ(f).

Lemma 6. Let �Γ = (V, �E, F ) be a normal multigraph, let μ and μR denote the

canonical multiplicity functions for �Γ and �ΓR, respectively, let g denote their common
gap, and let μ′ = μ+ c for some c > 0. We have
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(i) k(μ′) = k(μ) + 8c.
(ii) k(μR) = 8g − k(μ).

Furthermore, among all of the sets of multiplicities for �Γ and �ΓR, at most one set
can satisfy the condition in Lemma 5(ii).

Proof. The key to this result is the fact that
∑

f∈F (4− δ(f)) = 8:

∑
f∈F

(4− δ(f)) = 4|F | −
∑
f∈F

(δ(f)) = 4|F | − 2| �E|.

Now from Euler’s formula applied to �Γ, 4|V | − 4| �E|+4|F | = 8, and since each vertex

has degree 4, 4|V | = 2| �E|. Thus 4|F | − 2| �E| = 8. We have
(i) k(μ′) =

∑
f∈F (4− δ(f))(μ(f) + c) =
= k(μ) +

∑
f∈F (4 − δ(f))c = k(μ) + 8c.

(ii) k(μ) + k(μR) =
∑

f∈F (4 − δ(f))μ(f) +
∑

f∈F (4− δ(f))μR(f) =
=

∑
f∈F (4− δ(f))g = 8g.

It is clear from (i) that no two distinct multiplicities for �Γ (or �ΓR) could both
satisfy the condition in Lemma 5(ii). Now suppose that μ′ = μ+ c and μ′

R = μR + cR
both satisfy the condition in Lemma 5(ii). Then k(μ′) + k(μ′

R) = 8. On the other
hand, 8 = k(μ′) + k(μ′

R) = k(μ) + k(μR) + 8c + 8cR = 8(g + c + cR). The only
solution is c = cR = 0 and g = 1, which is impossible. (One could interpret this as the
parameters of a single non-self-intersecting curve where either orientation bounds a
hemisphere.)

This result is also illustrated by the graphs in Figure 23.
We construct a covering patch for normal multigraph on the sphere in exactly

the same way that we construct a covering patch for normal patch in the plane. The
theorem for the sphere analogues to Theorem 3 has almost the same statement and
exactly the same proof.

Theorem 5. Let �Γ be a normal patch.
(i) �Γ admits a covering patch if and only if it admits a set of multiplicities that

satisfy the conditions in Lemma 5 and it admits an acceptable collection of
bijections.

(ii) Two covering patchs Φ = (V ′, E′, F ′, �B) and Φ∗ = (V ′, E∗, F ′, �B), given by
the acceptable collections of bijections σe and σ∗

e , are equivalent if and only
if there exists a family of permutations πv : {v2, . . . , vh}, for each v ∈ V , so

that σ∗
e = πvσe = πu for each edge e = (u, v) ∈ �E.

The curve in Figure 23 is an example of a curve S on the sphere that bounds a
distorted disk. To satisfy the conditions of Lemma 5 we must the choose the multiplic-
ities assigned in C. There are three families of bijections that compose the identity
around each face. But one results in a disconnected graph, leaving two acceptable
collections of bijections. They are isomorphic, but there is no isomorphism that fixes
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the boundary. They yield the two distinct extensions pictured in Figure 24. We note
that these distorted disks cover the entire sphere. It follows that this curve embedded
in the plane does not bound a distorted disk.

� �
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Fig. 24.

7. Comments and questions. We note that any normal curve S in the plane
can be identified with a normal curve on the sphere. If S bounds a distorted disk in
the plane, it also does so on the sphere, but that disk will not cover the entire sphere.
Conversely, any normal curve S on the sphere that bounds a distorted disk that does
not cover the entire sphere can be identified with a normal curve S in the plane that
bounds a distorted disk. Hence we may think of the immersion problem in the plane
as a special case of the immersion problem in the sphere.

Recall that Adkisson and MacLane [1] showed that the embedding of the curve
in the sphere is uniquely determined up to equivalence by the sequence of crossings,
that is, by the code of indexed vertices. The code for the GHZ curve is

a0c0e1e0d1a1f0d0b1b0c1f1,

and the code for the curve in Figure 23 is

a0d1d0c1c0b1b0a1,

Is there a reasonable algorithm whereby one could compute directly from the
code the number of extensions to the sphere and whether or not they are really
planar extensions?

Clearly, a catalog of the values of such a function could be computed, perhaps
by computer, for all sufficiently short codes. Would such a catalog be of any interest?
Finally, is there any easy-to-see connection between these codes and the Blank words
discussed above?
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