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Abstract It has been shown that the boundary structure of patches with all faces of
the same size k, all interior vertices of the same degreem and all boundary vertices of
degree at mostm determines the number of faces of the patch (Brinkmann et al., Graphs
and discovery, 2005; Guo et al., Discrete Appl Math 118(3):209–222, 2002). In case
of at least two defective faces, that is faces with degree k′ �= k, it is well known that
this is not the case. The most famous example for this is the Endo–Kroto C2-insertion
(Endo and Kroto, J Phys Chem 96:6941–6944, 1992). Patches with a limited amount
of disorder are especially interesting for the case k = 6, m = 3 and k′ = 5. This case
corresponds to polycyclic hydrocarbons with a limited number of pentagons and to
subgraphs of fullerenes. The last open question was the case of exactly one defective
face or vertex. In this paper we generalize the results of Brinkmann et al. (2005) and
Guo et al. (2002) and in some cases corresponding to Euclidean lattices also deal with
patches that have vertices of degree larger thanm on the boundary, have sequences of
degrees on the boundary that are identical only modulo m and have vertex and face
degrees in the interior that are multiples of m, resp. k. Furthermore we prove that in
case of at most one defective face with a degree that is not a multiple of k the number
of faces of a patch is determined by the boundary. This result implies that fullerenes
cannot grow by replacing patches of a restricted size.
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1 Introduction

It is easy to prove that the cyclic sequence of vertex degrees in the boundary uniquely
describes the interior of a hexagonal patch, that is a 2-connected planar graph with
all faces hexagons, all non-boundary vertices of degree 3 and all boundary vertices of
degree at most 3—as long as it is a subgraph of the hexagonal (graphite) lattice. Inter-
preting the vertices as carbon atoms and attaching a hydrogen to all boundary vertices
with degree 2, these structures correspond to the well studied class of benzenoids in
chemistry.

It has long been believed that this is also the case if the graph is not necessarily
a subgraph of the hexagonal lattice (in this case the corresponding molecules are
called fusenes or planar polycyclic hydrocarbons with all faces hexagons), until in
[1] a counterexample was given (see Fig. 2) and at the same time it was shown that
nevertheless the number of vertices, edges, and faces is well determined. Later this
result was proven in a more general context [2].

Patches with the same boundary and different interior also play an important role
as local rearrangements in fullerenes. A fullerene is a molecule of pure carbon on the
surface of a topological sphere so that the corresponding graph is cubic and all faces
have degree 5 or 6. The Euler formula implies that there are exactly 12 pentagons. The
first fullerene was discovered in 1985 (see [3]). Since scientists believe that fullerenes
may play an important role in future applications (see e.g. [4,5]) a large number of
articles has been published on the topic since 1985 and in 1996 the Nobel prize in
chemistry was awarded to Curl, Kroto, and Smalley for their discovery.

In [6] Endo and Kroto proposed a mechanism for fullerene growth (see Fig. 1) that
is based on the idea of a finite region of the fullerene—that is: a patch in the sense
above—being replaced by another patch with more vertices (atoms) and the same
boundary structure. In [7] a computer was used to list pairs of patches that can be used
for this purpose. All pairs of patches found in this approach had at least two pentagons
and though this might have been the case because the list was restricted to relatively
small examples, it raised the question whether the number of vertices (or equivalently
faces) of patches with only one pentagon is determined by its boundary alone. In this
paper we will answer this question in a more general context and prove that this is
indeed the case. A chemical consequence is that large fullerenes with long distances
between any two pentagons (e.g. large fullerenes with icosahedral symmetry) cannot
be formed in this way unless very large patches are involved. Another proposal for
the formation of fullerenes would be that some similar process of patch replacement
[8,9] occurs with pairs of patches of the same size. While various pairs of patches
are known that both contain one or no pentagon and have the same boundary but
different interior (see Fig. 2), none of the patches in these known pairs can occur as
a subgraph of a fullerene. As mentioned before, such hexagonal patches cannot be
subgraphs of the hexagonal (graphite) lattice and Graver even showed that there must
be some 3-fold overlap if they are embedded into the graphite lattice [10], but it is still
unknown whether they can occur as subgraphs of fullerenes.
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Fig. 1 The Endo–Kroto growth patches

Fig. 2 Two different patches with the same boundary

Though fullerenes and planar polycyclic hydrocarbons are the most important
applications, we will prove the results in a more general context with fullerene patches
and hydrocarbons being just a special case.

2 Basic definitions and first results

We will always assume plane graphs to come with a combinatorial embedding in the
plane (see [11,12]). Undirected edges are identified with a set of two opposite directed
edges and for every vertex v we have a rotational order of the directed edges starting
at v, which we will interpret as clockwise. For sets D of directed edges and U of
undirected edges we will also write D ∩ U to denote the set of directed edges in D
that have underlying undirected edges in U . The inverse of a directed edge e will be
denoted by e− and for a directed path or cycle P the inverse path or cycle is denoted
P−.

Definition 1 For a plane graph G we denote the set of vertices, (undirected) edges
and faces of G as V (G),E(G), and F(G). The set of directed edges is denoted as
�E(G). In case there is no possibility of misunderstandings, we only write V,E, F, �E.
Two faces are said to be neighbouring if they share an edge.
The degree of a face is given by the number of edges in its boundary with bridges
counted twice.
In order to distinguish multisets from sets, we will denote them as 〈. . .〉.
An (m, k, VD, FD) graph is a connected plane graph with vertex set V , edge set E,
face set F , and multisets VD = 〈deg(v)|v ∈ V, deg(v) �= m〉 and FD = 〈deg(f )|f ∈
F, deg(f ) �= k〉.
We call FD the multiset of defective face degrees and VD the multiset of defective
vertex degrees. Vertices v with deg(v) �= m are called defective vertices and faces f
with deg(f ) �= k are called defective faces.

123



J Math Chem

In this language, fullerenes are (3, 6, 〈〉, 〈5, . . . , 5〉) graphs with the multiplicity of
5 in FD being 12. Except for benzene itself for every fusene there exists some number
l so that with multiplicity l of 2 in VD , the fusene is a (3, 6, 〈2, . . . , 2〉, 〈2l−6〉) graph.

Definition 2 For an (m, k, VD, FD) graph with VD = 〈d1, . . . , dl〉 and FD =
〈f1, . . . , fj 〉 we define the vertex deficiency as DV = ∑l

i= 1(m − di) and the face

deficiency as DF = ∑j
i= 1(k − fi).

Lemma 1 Given an (m, k, VD, FD) graph with v := |V | the number of vertices,
e := |E| the number of edges, and f := |F | the number of faces. Then the following
relations hold:

v = kf −DF +DV

m
(1)

e = kf −DF

2
(2)

(2k − km+ 2m)f = 4m+ (2 −m)DF − 2DV (3)

Proof In order to count every edge twice, we can once count vertices and once faces
weighted with their degrees to determine the number of edges, i.e. 2e = mv−DV and
2e = kf −DF . The second relation directly yields (2) while (1) follows by equating
both relations. Inserting (1) and (2) into the Euler formula v − e + f = 2, we obtain
(3). �	
Theorem 1 LetG be an (m, k, VD, FD) graph withm, k ∈ N,m, k ≥ 3, and (m, k) /∈
{(3, 6), (4, 4), (6, 3)}. Then the number of faces is uniquely determined by the vertex
deficiency and the face deficiency. It is given by

f = 4m+ (2 −m)DF − 2DV
2k − km+ 2m

. (4)

In particular, we can determine the number of faces with degree k by just using m, k
and the degrees of the defective faces and vertices.

Proof In case 2k − km + 2m �= 0, (4) is immediately obtained by (3). This is not
applicable for the pairs of integers (m, k) fulfilling 2k−km+2m = 0, or equivalently
k = k(m) = 2m

m−2 . k(m) is a monotonically decreasing function with k(3) = 6,

k(4) = 4, k(5) = 3 1
3 , k(6) = 3, and k(7) = 2 4

5 . Therefore, the only integers
(m, k) with m, k ≥ 3 that fulfill 2k − km + 2m = 0 are the pairs (m, k) = (3, 6),
(m, k) = (4, 4), and (m, k) = (6, 3). For all other pairs, i.e. m, k ≥ 3 with (m, k) /∈
{(3, 6), (4, 4), (6, 3)}, we have 2k − km+ 2m �= 0 and hence formula (4) holds. �	

This theorem implies that in case (m, k) /∈ {(3, 6), (4, 4), (6, 3)}, two (m, k,

VD, FD) graphs contain the same number of faces - and since the number of defective
faces is given they also have the same number of non-defective faces. For the other
three cases (m, k) = (3, 6), (m, k) = (4, 4), and (m, k) = (6, 3), this is not true (see
Fig. 3).
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Fig. 3 Two (3, 6, 〈2, 2, 2, 2, 2, 2, 2, 2, 2, 2〉, 〈14〉)graphs (on the left), two (4, 4, 〈2, 2, 2, 2, 3, 3, 3, 3〉, 〈8〉)
graphs (middle) and two (6, 3, 〈2, 2, 3, 3, 4, 4, 4, 4〉, 〈8〉) graphs (right) with a different number of faces in
each case

3 Patches

Definition 3 An (m, k, VD, FD, o) patch is an (m, k, VD, FD) graph, together with
a distinguished face o ∈ F called the outer face. By definition (m, k, VD, FD, o)
patches are special (m, k, VD, FD) graphs.
Since in patches the outer face—which may have size k or not—is in general not
regarded to be a defective face and since defects that are multiples of the regular
face or vertex degrees play a special role, it is useful to introduce the notations F ′ =
F \ {o}, F ′

D = FD\〈deg(o)〉, V ′
D = VD\〈deg(v)|v ∈ o〉, F ′′

D = 〈r ∈ F ′
D|r �=

k ∗ n∀n ∈ N〉 and V ′′
D = 〈r ∈ V ′

D|r �= m ∗ n∀n ∈ N〉.
In case of patches the term boundary cycle of the patch always denotes the boundary

cycle of the outer face.
For a vertex v we define

A(v) := {(e1, e2)|e2 follows e1 in the rotational order around v}

and A := ⋃
v∈V A(v).

where A is called the set of angles. The face f (e1, e2) corresponding to an angle
(e1, e2) is the face between the two edges in the order given.
A labelled plane (m, k, VD, FD) graph is a plane graph together with a labelling
l : A → {0, . . . m− 1}.
A labelling l of an (m, k, VD, FD, o) patch is said to be suitable if l(e1, e2) = 0 for
all (e1, e2) with f (e1, e2) �= o and for all v ∈ V we have

∑
a∈A(v) l(a) + deg(v) =

0(modm). In the following we will assume all labellings of patches to be suitable.

By this definition, fusenes (except benzene) are not only (3, 6, 〈2, . . . 2, 〉, 〈2l−6〉)
graphs for some multiplicity l of 2 in VD , but also (3, 6, 〈2, . . . 2〉, 〈2l−6〉, o) patches.
Benzene is a (3, 6, 〈2, 2, 2, 2, 2, 2〉, 〈〉, o) patch.

Simply connected subgraphs of fullerenes that do not consist of a single hexagon
are (3, 6, 〈2, . . . 2〉, 〈n, 5, . . . , 5〉, o) patches with n the size of the boundary and some
multiplicity of 5 in FD that is at most 12.

In our drawings we will always depict the patches embedded into the plane so that
the outer face is the unbounded face.
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Fig. 4 A (4, 3, 〈6, 6, 3, 3〉,
〈6〉, o) patch and a
(4, 3, 〈2, 2, 3, 3〉, 〈6〉, o) patch
with similar boundaries but
different numbers of faces

Definition 4 The boundary sequence of an (m, k, VD, FD, o) patch is the cyclic
sequence d0, d1, . . . , dn of vertex degrees in the directed boundary cycle of the outer
face o.

For given m, two boundary sequences d0, d1, . . . , dn, d ′
0, d

′
1, . . . , d

′
n are said to be

similar if there is a cyclic reordering or inversion d̄0, d̄1, . . . , d̄n of one of the sequences
(w.l.o.g d ′

0, d
′
1, . . . , d

′
n) so that di = d̄i (mod m) for 0 ≤ i ≤ n.

Patches with similar boundary sequences are said to have a similar boundary.

One of the things we will prove in this section is that for (m, k) ∈ {(3, 6), (4, 4),
(6, 3)} and given m, k, VD,WD,FD, o with V ′′

D = W ′′
D = ∅ and |F ′′

D| ≤ 1, a
2-connected (m, k, VD, FD, o) patch and a 2-connected (m, k,WD,FD, o) patch with
similar boundary have the same number of faces (and therefore also vertices and edges).
For (m, k) �∈ {(3, 6), (4, 4), (6, 3)} this is not true as can be seen from the example in
Fig. 4.

The 3 cases (m, k) ∈ {(3, 6), (4, 4), (6, 3)} correspond to the 3 euclidean lattices
and are therefore called the euclidean cases. An (m, k, VD, FD, o)-patch with (m, k) ∈
{(3, 6), (4, 4), (6, 3)} and V ′′

D = F ′′
D = ∅ is called a euclidean patch.

We will adopt a method similar to that used in [1,2]. It can be used for each of the
euclidean cases with some changes and was demonstrated only for the case (3, 6) in
[1] and only for (6, 3) in [2]. Here we will demonstrate only the remaining case (4, 4),
but comparing the proof to [1,2] it is not difficult to see that for (3, 6) and (6, 3) the
proof can be done very similarly. In what follows we will denote (4, 4, VD, FD, o)
patches as e4-patches if F ′

D = V ′
D = ∅, as ē4-patches if F ′

D and V ′
D only contain

multiples of 4, as e41-patches, if V ′
D = ∅ and |F ′

D| = 1, and as ē41-patches, if F ′
D

contains only one non-multiple of 4 and V ′
D none.

Let L denote the 4-regular square lattice in the euclidean plane equipped with a
standard coordinate system, so that the vertices are all pairs (x, y) with x, y ∈ Z and
the (directed) edges are all pairs ((x, y), (x′, y′)) of vertices with |x−x′|+|y−y′| = 1
(see Fig. 5).

For a vertex v = (a, b) ∈ L we set x(v) = a and y(v) = b. The set �EL = �E(L) is
partitioned into 4 disjoint sets �E0, . . . , �E3:

�E0 := {(v,w) ∈ �EL|x(v)+ 1 = x(w)}
�E1 := {(v,w) ∈ �EL|y(v)− 1 = y(w)}
�E2 := {(v,w) ∈ �EL|x(v)− 1 = x(w)}
�E3 := {(v,w) ∈ �EL|y(v)+ 1 = y(w)}

The set �Eh of horizontal edges is defined by �Eh = �E0 ∪ �E2.
Note that any automorphism of L that is a (counterclockwise) rotation by an angle

of n ∗ 90 degrees maps an edge in �Ei onto an edge in �Ei−n mod 4.
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(−2,0) (−1,0)

(0,2)

(0,1)

(0,0)

(0,−1)

(1,0)

(1,1)

(2,0)

Fig. 5 The lattice L

Now let M be a finite multiset of edges of �EL (short �EL-multiset). For horizontal
edges e the y-coordinate of both vertices is the same, so we can define y(e) as the
y-coordinate of any of its vertices.

We define

Slr (M) :=
∑

e∈M∩ �E0

y(e)−
∑

e∈M∩ �E2

y(e)

(the index lr stands for left, right). If we denote the (disjoint) union of multisets
by ‘+’, it is immediate that for two �EL-multisets M,M ′ we have Slr (M + M ′) =
Slr (M)+ Slr (M

′).
An enclosing cycle of some patch G is a directed cycle with the same underlying

set of undirected edges as the directed boundary cycle and the same multiplicity with
which an undirected edge occurs as a directed edge (see Fig. 6).

Lemma 2 Given a euclidean patch P and an enclosing cycle C of P. If B is a simple
cycle in the graph Z of undirected boundary edges of P, then B ′ = C ∩B is a directed
subcycle of C.

Proof Assign a flow of value one to all directed edges ofC. Since it is a directed cycle,
the Kirchhoff law is fulfilled at every vertex. If B ′ is not a directed cycle, there is a
vertex v ∈ B ′ that is the endpoint of two directed edges (a, v) and (b, v) both in B ′.

Removing v from Z, a and b are in the same component K , but all other vertices
neighbouring v inZ must be in other components (due to the Jordan Curve Theorem).
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Fig. 6 A directed boundary cycle of an e4-patch and an enclosing cycle that is not the boundary cycle of
the same patch

So summing up the flows for all vertices inK we get a total outflow of two—violating
the Kirchhoff law. So v cannot exist. �	

Given a euclidean patch and an enclosing cycle C, it follows easily from the Jordan
curve theorem that for each bounded face there is a unique simple cycle B like above
surrounding it and due to this lemma, this induces a directed subcycle B ′. So every
bounded face is either on the right or left hand side of all edges of its surrounding
cycle B ′. We call these faces right, resp. left and denote the set of right faces of an
enclosing cycle C as Fr(C) and the set of left faces as Fl(C).

Therefore for any euclidean patch P and enclosing cycle C we can define

Definition 5

Flr (P ) :=
∑

f∈Fr (C)
(deg(f )/4)−

∑

f∈Fl(C)
(deg(f )/4)

and

Fw(P ) :=
∑

f∈F,f �=o
(deg(f )/4)

We call Fw(P ) the weighted number of faces of P .

In case the enclosing cycle is the boundary cycle, we have Flr (P ) = Fw(P ), since
they are all right faces.

Definition 6 Given a labelled patch P . The labelled boundary graph B = B(P ) is
the graph of all boundary edges and vertices labelled in the following way:

Let a = (e, e′) ∈ A(B). If a ∈ A(P ) we define lB(a) = l(a). Otherwise let
e = e0, e1, . . . , ek = e′ be the rotational order around the vertex e ∩ e′. Then we
define lB(a) = (

∑k−1
i=0 l(ei , ei+1)+ (k− 1)) mod 4. This is the number of edges and

the sum of labels between e and e′.
An embedding of a labelled graphG into L is a graph homomorphism ψ : G → L

so that if (e, e′) ∈ A(P ), there are l(e, e′) edges in the rotational order aroundψ(v) bet-
weenψ(e) andψ(e′)—or equivalently: ifψ(e) ∈ �Ei thenψ(e′) ∈ �Ei+l(e,e′)+1 mod 4.
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(a+b+1) mod 43
a

b

Fig. 7 Reducing a labelled tree

Fig. 8 Reducing a face

e0

a

b (b+1) mod 4

(a+1) mod 4
0

0

0
0

Lemma 3 Given a labelled ē4-patch P with an enclosing cycle C and its labelled
boundary graph B = B(P ). Then B(P ) can be embedded intoL by a homomorphism
ψ and for each such ψ we have:

Flr (P ) = Slr (〈ψ(�e) ∈ �EL|�e ∈ C〉)

Proof We will prove this by induction in the number b of bounded faces.
If b = 0 the patch is a tree. We will prove this case by induction in the number

of edges. In case there is just one edge (with both angles necessarily labelled 3), the
result is obvious. So let T be a labelled tree with n+ 1 edges. Perform the reduction
depicted in Fig. 7 to the smaller labelled tree T ′. The smaller tree can easily be seen
to be a ē4-patch too, so by induction the lemma holds.

The values of the labels given in the construction ensure that every embedding of
the smaller patch can be extended to one of the larger patch—ensuring the existence
of an embedding ψ . The fact that the two inverse directed edges are embedded on
inverse edges in L ensures that Slr stays 0—just like the number of unbounded faces.

On the other hand restricting a given embedding φ of T to T ′ gives an embedding
of T ′ proving that every embedding of T has the requested property.

This gives us the lemma for ē4-patches with 0 bounded faces. So assume it is true
for ē4-patches with i bounded faces and given a ē4-patch P with i + 1 bounded faces
and enclosing cycle C.

W.l.o.g. there is a right face of size 4 ∗ n. For a boundary edge �e0 in the enclosing
cycle that has a bounded face on the right, perform the reduction to a ē4-patch P ′ with
one bounded face less and a new enclosing cycle as depicted in Fig. 8.

By induction the boundary graph of P ′ can be embedded and the fact that we have
label 0 for the 4n−2 angles at those vertices of the new face that are not connected by
the new edge e0 ensures that the images of the endpoints of the path of length 4n−1 are
the endpoints of an edge in L. So we can extend the homomorphism of B(P ′) to one
of B(P ) (and again deduce that any embedding of B(P ) can be interpreted as coming
from one of B(P ′)). By summing up the labels at the endpoints this homomorphism
can easily be shown to be an embedding.
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Fig. 9 Splitting the sum

Flr (P ) = Flr (P
′)+ n, since the new face f of degree 4n is on the right hand side

of the enclosing cycle and for all other faces the situation does not change.
But Slr (〈ψ(�e) ∈ �EL|�e ∈ C〉) = Slr (〈ψ(�e) ∈ �EL|�e ∈ C′〉)+ Slr (〈ψ ′(�e) ∈ �EL|�e ∈

F ′〉) with C′ the enclosing cycle of P ′, F ′ the boundary cycle of the face f on the
right hand side of �e0, and ψ ′ mapping �e0 onto the same edge as ψ does. This holds
since for each edge �e in C′ \ C there is an edge in F ′ being mapped exactly on the
oppositely directed edge in L, so contributing the same value with opposite sign. The
only edge of C \C′ is provided by F ′ and mapped onto the same directed edge as by
ψ . This splitting of the sum is depicted in Fig. 9.

But since it is easy to see that Slr (〈ψ ′(�e) ∈ �EL|�e ∈ F ′〉) = n we get Slr (〈ψ(�e) ∈
�EL|�e ∈ C〉) = Flr (P ) proving the lemma. �	

Lemma 4 Given a closed directed cycle CL in L. Then there is a ē4-patch P and a
labelled enclosing cycle C of P , so that CL is the image of an embedding of C.

Proof In fact it is even easy to prove this lemma for e4-patches instead of ē4-patches
by decomposing CL into simple cycles and taking the interior of these simple cycles
to form the patch. A detailed proof can be found in [13]. �	
Corollory 1 For a given labelled cycle C embeddable in L by an embedding ψ , the
value of Slr (ψ(C)) does not depend on ψ , so we can define Slr (C) = Slr (ψ(C)).

Proof There are a ē4-patch P and enclosing cycle C as in Lemma 4 so that due to
Lemma 3 for any ψ the value of Slr (ψ(C)) must equal the value of Flr (P ). But this
value does only depend on the patch and the enclosing cycle and not on the embedding.

Theorem 2 The weighted number of facesFw(P ) of a labelled ē4-patchP is uniquely
determined by its labelled boundary cycle. In case FD is given, the number of faces
is uniquely determined.
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Fig. 10 Two 2-connected
ē4-patches with the same
boundary, but different FD and
also different number of faces

a
a′
b′

b

Fig. 11 Two e4-patches with the same boundary sequence and different numbers of faces, but equal
weighted number of faces

Proof This is a direct consequence of Lemma 3: for any two ē4-patches, the same
labelled boundary cycle C implies the same value of Slr (C), so also the same value
of Flr (P ). Since all faces are right faces, this implies the same weighted sum Fw of
faces. In case FD is given, the number of faces can be deduced from the number of
weighted faces.

Figure 10 gives an example where different values of FD lead to different numbers
of faces.

Since in a patch where the boundary is a simple cycle the labels are uniquely
determined by the vertex degrees and since 2-connected patches have simple boundary
cycles, we get:

Corollory 2 Two 2-connected ē4-patches with similar boundaries have the same
weighted number of faces. In case they have the same FD , they also have the same
number of faces.

If the patches are not 2-connected, it is possible that they cannot be labelled in a
way that produces identically labelled boundary cycles. In Fig. 11 angle a must have
label 2, so if the patches were identically labelled, the corresponding angle a′ had label
2 too and therefore angle B ′ label 0 and also the corresponding angle b, which on the
other hand must have label 2—a contradiction. These patches are also an example of
two e4-patches with the same boundary sequence and a different number of faces.

Definition 7 Two labelled directed paths or cycles P,P ′ with labellings w,w′ are
called inverse isomorphic if there is an orientation reversing isomorphism φ : P → P ′
so that for every a ∈ A(P ) we have w(a) + w′(φ(a)) ≡ 2 mod 4. In this case we
write P ′ = P−. Note that a given labelled path P is in fact inverse isomorphic to its
inverse, so this notation extends the previous one.

Remark 1 For a labelled cycle C that can be embedded into L we have that C− is
also embeddable and Slr (C) = −Slr (C−).
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Fig. 12 A directed boundary
cycle of a ē41-patch and a path
around the defective face

P

X

Q
Cv

v

Proof Choose two edges e ∈ C, e′ ∈ C− that are mapped onto each other by the
isomorphism φ : C → C− and an embeddingψ ofC. Then defineψ ′(e′) = (ψ(e))−.
Now we can recursively embed the next edges of C′ showing on one hand that we
get an embedding and on the other that for every edge e′ ∈ C′ we have ψ ′(e′) =
(ψ(φ−1(e′)))−. Now the result follows directly from the additivity of Slr . �	

Let us now switch to ē41-patches, i.e. F ′
D contains exactly one non-multiple of 4

and V ′
D none.

The following techniques come from the theory of disordered tilings (see [14–
17]) and correspond to the observation that in a disordered tiling any path around the
disorder corresponds to the same automorphism of the underlying periodic tiling. In
our case we will see that the boundary of a ē41-patch with F ′′

D = 〈n〉 corresponds
to a rotation by 90 ∗ n degrees around the center of a face in L. We will present the
proof in a way that does not assume the reader to know the aforementioned articles,
nevertheless they do of course help to understand the basic principles.

Definition 8 Given a ē41-patch G with F ′′
D = 〈n〉. Let d be the defective face with

deg(d) = n and v a vertex in the boundary. Then a directed path PXQ in G with
subpaths P,X and Q starting and ending at v is called a cutpath (relative to v) iff the
endpoint w of P is in the boundary of d, Q = P− and X is the path from w to w
around the boundary of d with d on the left. That is:X has n edges e1, . . . , en and for
1 ≤ i < n the edge ei+1 follows e−i in the rotational order around the endpoint of ei
(see Figs. 12 and 13).

A ē41-patch G with cutpath PXQ relative to a boundary vertex v and boundary
cycle C can be cut along PXQ to get a ē4-patch G′ with boundary cycle CvPXQ if
Cv denotes the closed path along C starting and ending at v and with the patch on the
right. Defining this patch cutting operation in a formal way is an easy exercise, but
details can also be found in [13]. Since CvPXQ is the boundary of a ē4-patch, it can
be embedded into L and forms a closed cycle.

By construction we know the following about the labels of CvPXQ.
Let p1, . . . , pk be the directed edges forming P , X = x1, . . . , xn, and Q =

P ′
k, . . . , P

′
1. ThenQ = P−, i.e. l(p−

j , pj+1)+ l(P ′
j+1, (P

′
j )

−) = 2 for 1 ≤ j ≤ k−1.

Furthermore we have l(p−
k , x1) + l(x−

n , P
′
k) = 3, since w is split into two new

vertices w′, w′′ with deg(w′) + deg(w′′) = deg(w) + 1, and l(x−
i , xi+1) = 0 for

1 ≤ i ≤ n− 1.
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Lemma 5 Let P̄ = P, x1, . . . , xn, P
− with P = p1, . . . , pk , P− = P ′

k, . . . , P
′
1 be

a labelled path with all labels l(x−
i , xi+1) = 0 for 1 ≤ i ≤ n − 1 and l(p−

k , x1) +
l(x−

n , P
′
k) = 3.

If P̄ is embedded in L by ψ then

(i) ψ(x1), . . . , ψ(xn) are in the boundary of the same face f of L and
(ii) for 1 ≤ j ≤ k we have that if ψ(pj ) ∈ �Em then ψ(P ′

j ) ∈ �Em+2−n mod 4

Proof Item (i) is obvious due to l(xi, xi+1) = 0 for 1 ≤ i < n, so we will concentrate
on (ii):
By the definition of embedding we have that ψ(P ′

j ) ∈ �Em+l mod 4 with

l ≡
k−1∑

i=j
(l(p−

i , pi+1)− 1)+ (l(p−
k , x1)− 1)+

n−1∑

i=1

(l(x−
i , xi+1)− 1)

+
⎛

⎝l(x−
n , P

′
k)− 1)+

k−1∑

i=j
(l(P ′

i+1, (P
′
i )

−)− 1

⎞

⎠ mod 4

Note that since we use p−
k instead of pk , the “+1” in the index of �E from Definition 6

becomes a “−1”.
Using the definition of “inverse path” for l(p−

i , pi+1) + l(P ′
i+1, (P

′
i )

−) and the
values of l() given in the lemma, we get

l ≡ 2(k − j)− 2(k − j)+ 3 − 2 − (n− 1) mod 4 ≡ 2 − n mod 4 �

Lemma 6 Let P̄ = P, x1, . . . , xn, P
− with P = p1, . . . , pk , P− = P ′

k, . . . , P
′
1

be a labelled path with all labels l(x−
i , xi+1) = 0 for 1 ≤ i < n and l(p−

k , x1) +
l(x−

k , P
′
1) = 3.

Consider an embedding ψ of P̄ into L and for i ∈ {1, . . . , k} let si be the starting
point of ψ(pi) and e′i the endpoint of ψ(P ′

i ). Furthermore let sk+1 be the endpoint of
ψ(pk) and e′k+1 the starting point of ψ(P ′

k).
Then for i ∈ {1, . . . , k+1} we have α(si) = e′i for α the counterclockwise rotation

around the center of the face f containing x1, . . . , xn in its boundary by n∗90 degrees.

Proof We prove this by induction in i starting with i = k + 1 and going from i + 1
to i. The case i = k + 1 can be easily checked since e′k+1 and sk+1 are both in the
boundary of f , so assume the lemma is proven for i + 1.

By induction we know that the endpoint si+1 of ψ(pi) is mapped onto the starting
point e′i+1 of ψ(P ′

i ) by α. Due to Lemma 5 we have that if ψ(pi) ∈ �Em, then

ψ(P ′
i ) ∈ �Em+2−n mod 4. But α(ψ(pi)) ∈ �Em−n mod 4 so it must be the unique edge

�e from �Em−n mod 4 ending at e′i+1. So α(si) is the starting point of �e which is the

endpoint of the unique edge (�e)− ∈ �Em+2−n mod 4 starting in e′i+1, which is just
ψ(P ′

i ). So α(si) = e′i .
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Fig. 13 A cutpath around a
triangle (compare Fig. 12)
embedded into L

p
2

p
1

p′
1

p′
2

x
1 x3

x

2

Theorem 3 Given two ē41-patchesG,G′ with the same labelled boundary cycle and
the same face degree n that is not a multiple of 4. Then G and G′ have the same
weighted number of faces.

If they also have the same multiset F ′
D of defective face degrees then they have the

same number of faces.

Proof Choose vertices v resp. v′ in the boundary ofG resp.G′ that correspond to each
other in the boundary sequence of the patches, and cutpaths PXQ, P ′X′Q′ relative
to v and v′. Let H and H ′ be the corresponding ē4-patches with boundary cycles
CvPXQ and C′

v′P ′X′Q′. SinceH andH ′ contain the same faces asG andG′ except
the one of size n, it is sufficient to show thatH andH ′ have the same weighted number
of faces, or equivalently

Flr (H) = Flr (H
′),

because all faces in H and H ′ are right faces.
The boundary cycles CvPXQ and C′

v′P ′X′Q′ can be embedded into L such that
the embeddings ofCv andC′

v′ are equal because the labelled boundaries of the patches
coincide. Since n is not a multiple of 4, a counterclockwise rotation by n ∗ 90 degrees
is nontrivial and therefore the center is well determined by one point and its image.
Then Lemma 6 applied to the endpoints of the images of Cv and C′

v′ in L yields that
the images of X and X′ lie in the boundary of the same face f of L. W.l.o.g. we can
assume that the images of X and X′ are even equal—otherwise we extend the path
P ′ in H ′ by an appropriate number of edges of the defective face. For the sake of a
simpler notation we denote the images of the paths in the same way as the paths in the
patches and obtain the cycles CvPXQ and CvP ′XQ′ in L (see Fig. 14).

Now consider the cycles P−P ′ and Q−Q′ as multisets in L. For constructing
corresponding labelled cycles, the labels at the meeting points of the two paths can
be determined from L and it is easy to see that the label l at the beginning of P ′
and the label l′ at the end of Q′ fulfil l + l′ ≡ 2 mod 4 (and analogously for the
other meeting point). Because of this and P = Q− and P ′ = Q′− we have for the
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Fig. 14 The two cutpaths
embedded into the lattice L

Cv

X 

Q′
P

P′
Q

labelled cycles Q−Q′ = ((Q−)−Q′−)− = (P−P ′)−, and therefore by Remark 1
Slr (Q

−Q′) = −Slr (P−P ′).
So we can add the multisets P−, P ′,Q−,Q′ in L to the multiset CvPXQ without

altering the value of Slr . Using again the additivity, Lemma 3, and the observation that
Slr only depends on the multiset of the underlying edges and not their numbering in
the boundary cycle, we get

Flr (H) = Slr (CvPXQ)

= Slr (CvPXQ)+ Slr (P
−P ′)+ Slr (Q

−Q′)
= Slr (CvPXQ+ P−P ′ +Q−Q′)
= Slr (CvP

′XQ′ + P−P +Q−Q)
= Slr (CvP

′XQ′)+ Slr (P
−P)+ Slr (Q

−Q)
= Slr (CvP

′XQ′)
= Flr (H

′)

�	
Again we obtain

Corollory 3 The weighted numbers of faces of a 2-connected ē41-patch is uniquely
determined by the sequence of vertex degrees in its boundary cycle.

Fact 1 Since with r the length of the boundary we have 4 ∗ Fw + r = 2|E|, in all the
cases where we have Fw as an invariant of a labelled or unlabelled boundary cycle,
we also have the number of edges as an invariant, while the number of vertices and
faces may well vary.
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