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Abstract

A cut-and-paste approach using a family of structurally similar ‘growth patches’ (pairs of non-isomorphic patches with the same
boundary but containing different numbers of vertices) allows formal construction from a C24 seed of all fullerene isomers with up to
at least 200 atoms. Algorithmic and chemical implications are discussed.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

A perennial problem in the chemistry and physics of
fullerenes is the question of how these organised cage struc-
tures emerge from chaotic low-nuclearity carbon vapour
[1,2]. Various particular mechanisms for carbon inges-
tion/extrusion [3] and isomerisation/annealing [4] have
been proposed and assessed by comparison with experi-
mental data and quantum mechanical calculations [5,6].
A parallel line of investigation involves the use of graph
theoretical techniques to catalogue the mathematically pos-
sible fullerene structures [7,8] and their interconversions,
based on assumed sets of rules for construction and trans-
formation [9–14]. The present study extends this approach,
exploring the ways that fullerenes can be formally gener-
ated from ‘seed’ polyhedra, using either a predefined set
of graph transformations or a set that is restricted by a cost
function intended to mimic the energetics of bond re-
arrangement and carbon insertion. The classical definition
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of a fullerene as a carbon cage whose skeleton is a trivalent
polyhedron with hexagonal and (12) pentagonal faces will
be used. It will be shown, for example, that a family of
transformations based on the Endo–Kroto C2 insertion
mechanism [3] gives access to all isomers of all fullerenes
up to C200 from a C24 seed.

2. The patch-replacement approach

These results are obtained using the notion of patch-
replacement, which can represent transformations between
fullerenes of the same carbon count (isomerisation) or of
different carbon counts (growth). Systematic catalogues
of isomerisation and growth transformations, ordered by
patch boundary and pentagon count, are available
[15,16]. The qualitative idea behind patch-replacement is
that we can imagine going from one fullerene graph to
another by a ‘cut-and-paste’ operation: take a patch
defined by a boundary cycle of edges and vertices and
replace it by another interior compatible with the same
boundary. Two non-isomorphic patches with the same
boundary and number of vertices, or two copies of a patch
with a boundary that has a larger symmetry group than the
patch itself, are called an isomerisation pair. Two patches
with the same boundary and different numbers of vertices
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are called a growth pair [15,16]. We distinguish two possible
operations: on the one hand, operations where the bound-
ary of the patch may not contact itself in the fullerene and,
on the other, operations where the boundary circuit may
contact itself, but cannot intersect itself (Fig. 1). Fig. 2
shows the simplest isomerisation and growth pairs: the
Stone–Wales patch [4], with which pentagons may be
moved around within a suitable fullerene graph, and the
Endo–Kroto patch [3], with which a suitable fullerene
graph may grow. Both have boundaries that are simple cir-
cuits of 12 vertices and 12 edges.

We will say of two fullerenes related by a growth trans-
formation that the larger is reducible to the smaller, imply-
ing that one can be formally obtained from the other by the
cut-and-paste process. A mathematical advantage of the
patch/boundary picture is that it might lead to an efficient
fullerene generator. If all fullerenes could be grown from
the smallest graph that contains hexagons – the unique
two-hexagon C24 cage – using a small repertoire of patches,
the construction part of the problem – that of complete
generation of objects, staying within the class – would have
been solved, and it would remain only to deal with isomor-
phism rejection, which could be done by standard tech-
niques [18,19].

Against this optimistic view, it is known that an infinite
number of growth operations would be needed to obtain all
fullerenes. This is a consequence of the fact that in a patch
a b c

Fig. 1. Allowed patch boundaries are: (a) simple circuits, (b) in some cases
circuits with repeated edges/vertices, but never (c) circuits with self-
intersections.

a

b

Fig. 2. The two simplest mechanisms for interconversion of fullerene
polyhedra: (a) the Stone–Wales isomerisation patch [4] and (b) the Endo–
Kroto C2 insertion patch [3].
with at most one pentagon, the boundary determines the
number of faces [17]. So a growth patch contains at least
two pentagons and as there is no upper bound on the size
of a smallest patch in a fullerene containing two pentagons
(we can think of larger and larger icosahedral fullerenes), it
is clear that an infinite number of different patches will be
needed to reduce these fullerenes.

It is an open question whether a combination of a finite
number of isomerisation and growth steps can access all
fullerenes. This question could be answered in the negative
if it could be shown that isomerisation patches with less
than two pentagons cannot occur as parts of fullerenes.
So far, no isomerisation patch is known that has fewer than
two pentagons and can occur in a fullerene.

We associate to every patch a cyclic sequence of zeros
and ones in the following way: a boundary vertex of a
patch that has an edge going inward (or equivalently: has
degree 3 in the patch) is assigned a 1 and a boundary vertex
that has an edge going outward into the rest of the fullerene
(or equivalently: has degree 2 in the patch) is assigned a 0.
Following the boundary of the patch we obtain a cyclic
sequence of 0s and 1s. We consider two boundaries to be
similar if one can be obtained from the other by repeating
a certain fixed part of the sequence. To be exact: if for given
l 2 N and ai, bi words in an alphabet of symbols 0 and 1,
both can be written in the form

Ql
i¼1aib

k
i for some k 2 N.

(k may be different for both patches.)
We define a set of patches to constitute a family, if: (a)

there is a formula
Ql

i¼1aib
k
i such that every boundary can

be written in that way and (b) for every k greater or equal
to a given k0 there is at least one pair of patches with
boundary

Ql
i¼1aib

k
i that forms a growth pair.

Another open question is then whether a single infinite
‘family’ of growth transformations will suffice to reach all
fullerenes from a finite number of ‘seed’ fullerene graphs.

3. Chemical aspects

From the chemical viewpoint, there are some more lim-
ited practical questions. Can all fullerenes up to some rea-
sonable number of vertices be reached with a finite set of
patches or family of patch types? Not all patches are
equally attractive as candidates for physical processes of
interconversion as they involve widely differing amounts
of activation energy. Supposing that the energy cost of a
growth transformation can be defined, at least approxi-
mately, by a graph theoretical property of the patch pair,
it is an interesting question to investigate accessibility of
fullerenes subject to a given cost function. What fullerenes
are accessible if a given total energy is available per growth
step? Physically reasonable cost functions are likely to
encourage use of small steps over steps that insert large
fragments.

One consideration that affects the use of the published
catalogue of growth patches [16] for exploration of reduc-
ibility in the present sense is that the catalogues of growth
and isomerisation patches were compiled with a notion of
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minimality in mind. The minimality criteria applied in gen-
eration of the catalogue eliminated patches that were
‘essentially’ the same as one already included apart from
some ‘spectator’ face. For example, the Stone–Wales/pyr-
acylene transformation [4] is ‘essentially’ the same transfor-
mation whether or not extra faces are added on the
boundary of the patch. Removal of such ‘spectator’ faces
can either increase or decrease the boundary length and
so it is necessary to check explicitly that a given search
for reducibility in the sense of the present Letter takes into
account all relevant patches.

Cost functions might also differentiate between re-
arrangement of pentagon–pentagon, pentagon–hexagon
and hexagon–hexagon edges, recognising that such edges
have different probabilities of bearing formal single and
variable bonds in the most appropriate Kekulé structures
for fullerene graphs, and that placing of double bonds in
the pentagons and hexagons may carry different steric
and electronic penalties and benefits.

4. Methods

The simplest (shortest-boundary) growth patch is the
Endo–Kroto patch [3], which has a maximum local C2v

symmetry, consists of one hexagon sandwiched between
two pentagons, and on replacement within its 12-vertex
boundary, leads to incorporation of two extra vertices in
the fullerene graph. Two natural extensions (see Fig. 3)
are: (i) the untwisted (C2v) patch with k + 1 hexagons sand-
a

b

Fig. 3. Extensions of the Endo–Kroto patch. Patch boundaries with: (a)
C2v symmetry and (b) C2 symmetry. In case (a) each extension inserts two
new vertices in every hexagonal face of the patch while in case (b) each
extension inserts two new vertices in total.
wiched between the two pentagons and (ii) the twisted (C2)
patch with two pentagons attached to a straight strip of
k + 1 hexagons in one of two possible enantiomeric ver-
sions [7,16]. Both series have the Endo–Kroto patch as
the smallest element in the set.

A computer program was written to find patch pairs and
series, e.g., of types (a) (‘C2v Endo–Kroto’) and (b) (‘C2

Endo–Kroto’) in fullerene isomers Cn, and to determine
reducibility of the isomer subject to possible further
restrictions.

Input to the described computer program is a set of fulle-
renes, generated by fullgen [8], either a description of the
boundary and the minimal number of vertices that a patch
with that boundary can have, or a set of patches so that the
program can determine these values itself. For every input
fullerene the computer program first checks for every direc-
ted edge in the fullerene whether the given boundary,
defined as right and left turns, closes without intersections
and – in case that they are forbidden – also without self con-
tacts when starting from this edge. In case such a boundary
is found, the number of vertices in the interior is counted
and in case it is larger than that of the smallest patch with
the given boundary, the fullerene is declared as reducible.
Since in some cases this allows for a large number of bigger
patches, there is also the option to give a maximal number
of vertices of the patch. This way it is often possible to
restrict the search enough that only one patch with the
given boundary – the second smallest that is possible –
can give rise to reducibility of the fullerene. Furthermore
there is also an option that counts the number of edges in
the interior of the patch found in the fullerene and in the
smallest possible patch with the same boundary and accepts
only cases where the sum of these is not too large. In fact we
never have to look for isomorphism of the patches found in
the fullerene and the patches given.

In the case of fullerenes obeying isolated-pentagon rule
(i.e., the IPR-fullerenes) there is also an option that makes
the program check that at certain places outside of the
boundary of the patch found in the fullerene there are no
pentagons. This can guarantee that the fullerene is reduc-
ible to another, smaller IPR-fullerene. This option is not
compatible with a boundary that contacts itself, so all
results given for IPR-fullerenes are for the case of forbid-
den boundary contact.

In order to reduce the probability of programming
errors, we implemented the approach independently once
in C and once in Java and computed the vast majority of
the results given here independently by both programs.

Using the results of the programs, it was possible to con-
struct connection tables for the isomers under various
assumptions for the set of allowed transformations, in
other words by playing out various ‘growth games’.

5. Results

C20 is an irreducible fullerene under all possible patch
transformations, since it is the smallest possible fullerene.



Table 1
Numbers of fullerenes irreducible by the C2v-symmetry Endo–Kroto
family

Number of atoms Irreducible (A) Irreducible (B)

20 1 1
24 1 1
26 0 0
28 0 0
30 1 1
32 0 0
34 0 0
36 1 1
38 1 1
40 3 2
42 0 0
44 0 0
46 0 0
48 1 0
50 1 1
52 1 1
54 1 1
56 4 3
58 0 0
60 2 2
62 2 2
64 1 0
66 0 0
68 3 2
70 2 2
72 3 2
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C24, as the first non-C20 fullerene isomer, is irreducible
under all variations of the Endo–Kroto patch transforma-
tion, but can be reduced using a replacement patch with 4
pentagons.

The C2 Endo–Kroto patch series is found to be remark-
ably efficient in generating larger fullerenes from smaller –
even when the boundary is prohibited to contact itself and
only the pair consisting of the two smallest patches for
every boundary is considered. Starting from a C24 ‘seed’,
all fullerene isomers of up to n = 200 are generated, with
three exceptions: the D3d isomer of C44 known in the fuller-
ene spiral notation [7] as 44:3 (Fig. 4) and one isomer of
each of C164 and C200. It is easy to see that 44:3 cannot
be generated by a type (b) patch because, due to the fact
that the pentagons involved must have 2 hexagonal neigh-
bours and due to the high symmetry, only two possibilities
have to be checked. Thus, all fullerenes from C26 to C200,
with just three exceptions, can be generated from the one
‘seed’ of C24. If one allows the boundary to contact itself,
all fullerenes from C26 to C200 – without exception – can
be generated from the one ‘seed’ of C24.

The symmetric C2v Endo–Kroto patch can also be used
to grow fullerenes from C24, and, as Table 1 shows, it does
fairly well, but is not as efficient as the twisted version. The
irreducible fullerenes (even when contacts of the boundary
are allowed) include an infinite family of exceptions in the
cylinders with hemi-dodecahedral caps (the isomers n:1
with n = 10k vertices) (30:1 (D5h), 40:1 (D5d), 50:1 (D5h)
. . . ). Furthermore there are various sporadic examples of
irreducible fullerenes already for small vertex numbers:
(36:13 (D3h)), (38:9 (D3)), (40:40 (Td)), (52:94 (D2d)),
(56:459 (D2h)), (56:622 (Td)), (56:910 (D3)), (60:208 (C2v))
until at 200 vertices there are 286 irreducible isomers.

There is an appealing simplicity in restricting the
allowed patches to a single structural family, but this is cer-
tain to result in the need for larger and larger patches as n

grows. Physically, growth processes will be limited by the
available activation energy, as well as the need for atoms
involved in the insertion to be present in the right place
at one time. On these grounds, it seems sensible to run
the same growth game, but with imposition of a cost func-
tion. If the reaction is concerted, and boundary relaxation
effects are not dominant, the more bonds are made and
3
C

3C

C2
′

Fig. 4. The irreducible D3d isomer of C44.
broken, the higher the activation energy we can expect.
This assumption can be formalised by writing the cost as
proportional to the sum of numbers of old edges broken
and new edges formed, where the proportionality factor
is some typical bond energy. The Endo–Kroto patch then
has the smallest cost, with 2 + 5 = 7 units, the C2v-symme-
try pair with h-hexagons in the smaller patch has a cost of
5h + 2 units and the C2-symmetry pair with h-hexagons in
the smaller patch has a cost of 2h + 5 units.

This cost function requires a definition of the minimum
size of a patch. The inclusion of a spectator face would
increase the apparent cost as it would increase the number
of interior edges both before and after transformation. A
well defined minimum replacement cost as a function of
the boundary length can be worked out. In the optimal
case, the minimal patch is empty of interior vertices, and
74 0 0
76 1 1
78 1 1
80 5 4
82 0 0
84 3 3
86 2 2
88 5 3
90 1 1
92 4 4
94 2 2
96 3 2
98 1 1

100 7 7

In (A) patches with touching boundary are forbidden, in (B) they are
allowed.



Table 2
Numbers of irreducible fullerenes for some reductions with low cost

Number of atoms Number of fullerenes Cost 7 Cost 9 Cost 11 Cost 12 Cost 13 Cost 14

20 1 1 1 1 1 1 1
22 0 0 0 0 0 0 0
24 1 1 1 1 0 0 0
26 1 0 0 0 0 0 0
28 2 0 0 0 0 0 0
30 3 1 0 0 0 0 0
32 6 2 1 0 0 0 0
34 6 0 0 0 0 0 0
36 15 2 0 0 0 0 0
38 17 2 0 0 0 0 0
40 40 3 1 0 0 0 0
42 45 0 0 0 0 0 0
44 89 6 2 1 1 1 0
46 116 3 0 0 0 0 0
48 199 4 1 0 0 0 0
50 271 4 2 1 1 0 0
52 437 8 1 0 0 0 0
54 580 6 0 0 0 0 0
56 924 20 6 2 1 1 1
58 1205 7 0 0 0 0 0
60 1812 19 4 2 1 1 1
62 2385 24 1 1 1 0 0
64 3465 28 1 1 0 0 0
66 4478 18 0 0 0 0 0
68 6332 54 7 4 1 1 1
70 8149 42 1 1 1 1 1
72 11190 75 6 1 0 0 0
74 14246 72 1 1 1 1 1
76 19151 116 5 1 0 0 0
78 24109 137 2 1 0 0 0
80 31924 208 16 8 2 2 2
82 39718 186 1 0 0 0 0
84 51592 311 14 1 0 0 0
86 63761 370 7 5 1 1 1
88 81738 487 16 1 0 0 0
90 99918 571 5 1 1 1 1
92 126409 805 34 5 1 1 1
94 153493 916 6 0 0 0 0
96 191839 1263 41 3 0 0 0
98 231017 1583 7 1 1 1 1

100 285914 2122 47 7 1 1 1
102 341658 2495 17 0 0 0 0
104 419013 3434 95 11 1 1 1
106 497529 4223 26 0 0 0 0
108 604217 5597 108 5 0 0 0
110 713319 6796 42 8 2 2 2
112 860161 8983 165 2 0 0 0
114 1008444 11087 70 8 0 0 0
116 1207119 14559 283 20 1 1 1
118 1408553 17649 121 2 0 0 0
120 1674171 22682 416 16 1 1 1
122 1942929 28260 161 6 1 1 1
124 2295721 35977 663 11 0 0 0
126 2650866 43176 314 9 0 0 0
128 3114236 55157 1100 49 1 1 1
130 3580637 67677 548 11 1 1 1
132 4182071 83501 1517 35 0 0 0
134 4787715 101495 862 35 1 1 1
136 5566948 125987 2548 31 0 0 0
138 6344698 151693 1322 24 0 0 0
140 7341204 185535 3842 115 3 3 2
142 8339033 223705 2549 36 0 0 0
144 9604410 271856 5609 122 0 0 0
146 10867629 323161 3787 75 1 1 1

(continued on next page)
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Table 2 (continued)

Number of atoms Number of fullerenes Cost 7 Cost 9 Cost 11 Cost 12 Cost 13 Cost 14

148 12469092 392534 9075 122 0 0 0
150 14059173 464384 5900 120 2 1 1
152 16066024 555529 13349 373 3 1 1
154 18060973 660162 10120 112 0 0 0
156 20558765 783149 19378 464 0 0 0
158 23037593 920356 14966 365 1 1 1
160 26142839 1092662 30133 529 2 1 1
162 29202540 1274238 22869 386 1 0 0
164 33022572 1500402 43108 1334 3 2 1
166 36798430 1751287 36618 553 0 0 0
168 41478338 2043783 62716 1664 6 2 0
170 46088148 2370495 52983 1282 4 3 2
172 51809018 2766500 92871 2161 4 2 0
174 57417255 3187225 78746 1784 2 0 0
176 64353257 3692948 131149 4318 3 2 1
178 71163435 4254187 118443 2309 3 0 0
180 79538725 4900921 186009 5810 10 5 1
182 87738289 5610804 168390 4942 14 5 1
184 97841157 6456333 266632 7853 19 6 0
186 107679684 7359855 241807 6427 7 2 0
188 119761030 8418313 367636 13947 29 11 1
190 131561725 9584710 348999 9479 15 2 1
192 145976654 10916720 511262 18445 45 10 0
194 159999441 12365760 483018 16710 28 5 1
196 177175662 14064380 708830 25302 57 20 0
198 193814634 15875462 674914 23308 63 13 0
200 214127713 17960189 958543 41825 106 24 2
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so the number of edges of the initial patch to be removed is
just half the number of entries ‘1’ in the boundary code,
whereas the number of edges to be inserted in the final
patch is the same plus 3/2 times the number of internal ver-
tices of the final patch (of which there are at least two).
This implies that for a patch of boundary length b that
includes p pentagons, the minimal cost of inserting two ver-
tices is (b + p)/2 in the case of a starting patch with no inte-
rior vertices (in which case b � (6 � p) is divisible by 4) and
(b + p)/2 + 3 in the case of a starting patch with a non-
empty interior. This gives us an upper bound for the
boundary lengths of the patches that have to be examined
when searching for growth pairs with a given cost.

Note that we use only patch pairs from the catalogue
published in [16], and owing to the notion of reducibility

of patches, testing for reducibility with cost c does not
include testing for a pair with cost c 0 < c that becomes a
pair of cost c by adding spectator faces. So, it is important
to test always for cost at most c for a certain c. Results of
the tests on fullerenes up to 200 vertices are shown in Table
2.

The number of pairs with cost at most k (k = 7,8, . . .14)
are: 1, 1, 2, 2, 6, 12, 50, 55. In fact, all the fullerenes up to
200 vertices that were found to be reducible by the full list
of 55 pairs of cost at most 14 were already reducible by a
small subset of this list (with only 8 pairs). We did not
check systematically for a subset of minimal size, so it is
possible that an even smaller set exists. The set of eight con-
sists of the following pairs (using the numbers in the cata-
logue [16]): cost 7: G2.12.1.1,2; cost 9: G2.16.2.1,2; cost 11:
G2.20.3.1,2; cost 13: G2.24.8.1,2 (these are the four small-
est pairs in the C2 Endo–Kroto family); cost 12:
G2.16.3.1,2 (this is the second smallest pair in the C2v

Endo–Kroto family); cost 12: G3.15.1.1,2; cost 12:
G4.14.1.1,2; cost 14: G2.20.5.1,2.

We can also look at growth of isolated-pentagon fulle-
renes. If these fullerenes are typically of lower energy than
those with adjacent pentagons, it seems reasonable on
physical grounds to search for growth patches that will
stay within the isolated-pentagon class. The twisted and
untwisted Endo–Kroto families are not particularly effi-
cient in this regard, leaving substantial numbers of irre-
ducible isomers, even below 100 vertices. However, this
situation changes significantly if one does not require
the larger patch in the reduction process to be an element
of the family, but allows it to be an arbitrary patch with
the same boundary, still replacing it with the smaller of
the corresponding Endo–Kroto pair. As an example, for
the patches G2.24.8.1-6 in [16], the first two form a pair
in the family of twisted Endo–Kroto patches, but there
are also four larger patches with the same boundary.
Extended twisted Endo–Kroto reducibility would consider
five possible reduction pairs for this boundary: G2.24.8.1
paired with each of G2.24.8.2-6. Table 3 gives the num-
bers of irreducible IPR-fullerenes up to 150 vertices for
both notions of reducibility. The fullerenes that are nei-
ther reducible with extended EK (C2) nor extended EK
(C2v) include all IPR isomers on up to 74 vertices, and
many (20 out of 47) of the IPR isomers from 76 to 84 ver-
tices, but then appear to be petering out in the remainder



Table 3
Numbers of IPR-fullerenes that are irreducible within the class of IPR-fullerenes under different notions of reducibility

Number
of atoms

Irreducible
EK (C2v)

Irreducible
extended EK (C2v)

Irreducible
EK (C2)

Irreducible
extended EK2

Irreducible extended
EK (C2v) or EK (C2)

70 1 1 1 1 1
72 1 1 1 1 1
74 1 1 1 1 1
76 1 1 2 2 1
78 5 5 4 2 2
80 6 6 5 5 4
82 8 8 7 7 7
84 21 20 16 7 6
86 16 16 5 0 0
88 18 17 8 1 0
90 20 18 12 0 0
92 29 27 18 3 0
94 18 17 5 2 1
96 28 26 16 0 0
98 19 15 12 2 0

100 23 18 14 0 0
102 31 26 8 0 0
104 38 23 9 1 0
106 28 14 8 0 0
108 55 18 10 0 0
110 21 10 0 0 0
112 28 7 6 0 0
114 28 9 5 1 1
116 36 10 4 0 0
118 28 8 4 0 0
120 49 15 9 2 1
122 37 12 2 0 0
124 60 15 3 0 0
126 42 8 3 0 0
128 57 11 2 0 0
130 42 2 2 0 0
132 89 5 9 0 0
134 50 0 5 0 0
136 63 1 2 0 0
138 56 2 7 0 0
140 61 6 6 0 0
142 42 5 2 0 0
144 87 10 5 1 0
146 71 6 1 0 0
148 99 4 4 0 0
150 105 6 4 0 0

The extended reducibility refers to reduction from any patch of given boundary to the smaller EK patch with the boundary.
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of the range to 150 vertices and beyond: the sporadic irre-
ducible higher fullerenes in this category are: a C3v isomer
of C94 with nine pentagons in the same relation as in C80,
a D3h cylinder with a C60 cap (C114), D5d cylinders with a
C80 cap (C120, C160, C200), and a D3d cylinder with a C60

cap (C168).

6. Discussion

The calculations presented here have shown that all the
fullerenes within present range of chemical characterisation
can be generated, formally, from the smallest hexagon-con-
taining fullerene, C24, using a single family of growth
patches. Specifically, all isomers of all fullerenes with up
to 200 atoms are accessible through a family that genera-
lises the simplest proposal for growth, the Endo–Kroto
patch [3]. Moreover, the admittedly crude approach of a
graph theoretically defined cost function suggests that a
large percentage of the full set of isomers will be accessible
with involvement of less than a dozen breaking-and-form-
ing bonds.

Two natural questions arise in relation to the growth
game as described so far. We have found a structurally sim-
ilar family of patches that generates all fullerenes to C200.
The practical question is: Is the whole family required to
generate these fullerenes, or is there some structurally var-
ied but smaller set of patches that would do the same job
for fullerenes up to some limiting number of atoms? The
mathematical question is: If the twisted-EK family is
retained as the sole set, can we generate all fullerenes?

The first question is open. The second is easily answered
in the negative, since it is possible to devise a counterexam-
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Fig. 5. A fullerene with 1340 atoms that cannot be constructed using only
growth operations from within the C2-symmetry family. Vertices of the net
represent pentagon sites. A path though opposite edges of hexagons,
starting from the pentagon at A on the left of the diagram, traverses the
net, narrowly missing pentagons at points D and E, leaves the net between
B and C on the right of the diagram, re-enters at the left, and intersects
with itself at point F before eventually hitting a pentagon at point G. By
symmetry, all such paths self-intersect. This is the smallest such fullerene
with icosahedral symmetry; it is an open question whether there are
smaller fullerenes of other symmetries that cannot be so constructed.
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ple, a fullerene that cannot have been constructed from any
smaller fullerene using any twisted EK patch. The smallest
counterexample known to us is the icosahedral fullerene
with Coxeter coordinates [20] (7,2) and 1340 atoms. An
unfolding of it is depicted in Fig. 5. The irreducibility can
be seen by observing that every path leaving a pentagon
and going straight through every hexagon intersects itself
before entering the next pentagon. So we will not be able
to find a subgraph isomorphic to the larger patch in one
of the pairs in the family.

From a pragmatic point of view, it becomes important
to know the size of the smallest counterexample. If no such
example occurs before, say, 250 or 300 atoms, then the
twisted-EK series could give an efficient way to generate
all fullerenes in the range where consideration of the full
set of isomers is still a practical proposition.

Work on refining the counterexample and on selection
of an optimal set of patches is in progress.
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