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Abstract

We explore the structure of the maximum vertex independence sets in fullerenes: plane trivalent
graphs with pentagonal and hexagonal faces. At thesame time, we will consider benzenoids: plane
graphs with hexagonal faces and one large outer face. In the case of fullerenes, a maximum vertex
independence set may constructed as follows:

(i) Pair up the pentagonal faces.
(ii) Delete the edges of a shortest path in the dual joining the paired faces toget a bipartite subgraph

of the fullerene.
(iii) Each of the deleted edges will join two vertices in the same cell of the bipartition; eliminating

one endpoint of each of the deleted edges results in two independent subsets.

The main part of this paper is devoted to showing that for a properly chosen pairing, the larger of these
two independent subsets will be a maximum independent set. We also prove that the construction of a
maximum vertex independence set in a benzenoid is similar with the dual paths between pentagonal
faces replaced by dual circuits throughthe outside face. At the end ofthe paper, weillustrate this
method by computing the independence number for each of the icosahedral fullerenes.
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Fig. 1.

1. The independence number of a fullerene or benzenoid

Let Γ = (V, E, F) be a fullerene,1 that is, a trivalent plane graph with only pentagonal
and hexagonal faces or a benzenoid,2 that is, a plane graph with hexagonal faces and
one large outer face such that all vertices have degree two or three with the vertices of
degree two restricted to the boundary of the outside face. Letα(Γ ) denote the (vertex)
independence number ofΓ . We wish to computeα(Γ ).3 To accomplish this we letW be
a maximum vertex independent set ofΓ , we let B be a maximum vertex independent set
of Γ in V − W and letG = V − B − W. We color the vertices inW white, the vertices
in B black, and the vertices inG gray. A gray vertex with only black and gray neighbors
could be recolored white, and a gray vertex with only white and gray neighbors could be
recolored black. Hence, by the maximality ofW andB:

Lemma 1. In a fullerene or a benzenoid with the vertex coloring defined above, each gray
vertex is adjacent to a black vertex and to a white vertex.

Now if g ∈ G is adjacent to two black vertices, letw be the white vertex adjacent to
g and assign(g, w) to the edge setEW; refer to Configuration 1 inFig. 1. If g ∈ G is
adjacent to two white vertices, letb be the black vertex adjacent tog and assign(g, b) to
EB, Configuration 2,Fig. 1. Referring to Configuration 3,Fig. 1, given two adjacent gray
vertices, arbitrarily label them,g1 andg2; then letb1 be the black vertex adjacent tog1 and
let w2 be the white vertex adjacent tog2. Assign(g1, b1) to EB, (g2, w2) to EW and assign
(g1, g2) to the edge setEG. Finally, if Γ is a benzenoid and admits a gray degree 2 vertex,
that vertex must be adjacent to one black andone white vertex. Hence we may interchange
its color with that of either of its neighbors without altering|W|, |B| and|G|. Repeating
this operation as often as is necessary, we may “move” each degree 2, gray vertex into a
degree 3, gray vertex. Hence, without loss ofgenerality, we may assume that a benzenoid
has no degree 2gray vertices. This alteration is illustrated in the second part ofFig. 2.

Lemma 2. Let Γ = (V, E, F) be a fullerene or a benzenoid with the vertex coloring and
edge partition defined above. Then|G| = |EB|+ |EW| and no two edges in EB ∪ EW have
a common endpoint.

1 For general information about fullerenes, consult [6,9,10] or [11].
2 For general information about benzenoids, consult [1,2,5,12] or [13].
3 For information about interpretingα(Γ ) in the chemical context, see [7].
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Fig. 3.

Proof. By definition, each gray vertex is the endpoint of exactly one edge inEB ∪ EW

and each edge inEB ∪ EW has exactly one gray endpoint. Hence,|G| = |EB ∪ EW| =
|EB| + |EW|; thelast equality holds sinceEW andEB are disjoint.

Now supposee, e′ ∈ EB ∪ EW have a common end point,x. Since each gray vertex is
incident with exactly one edge inEB ∪ EW, x �∈ G. Supposex ∈ B and lety andy′ be the
other endpoints ofe ande′, respectively. Clearly,y, y′ ∈ G. If y were adjacent to another
black vertex, we would have Configuration 1 and(x, y) would not belong toEB. Thus,
neither y nor y′ is adjacent to another black vertex. But, then we may recolorx gray and
bothy andy′ black, contradicting the maximality ofB. Similarly, x �∈ W and we conclude
that no suchx exists. �

Lemma 3. LetΓ = (V, E, F) be a fullerene or a benzenoid with the vertex coloring and
edge partition defined above.

(i) Each pentagonal face is incident with exactly one edge from EB ∪ EW.
(ii) Each hexagonal face is either incident with exactly two edges from EB ∪ EW or with

no edges from EB ∪ EW. Furthermore, if two edges from EB ∪ EW bound a hexagonal
face and are opposite one another, they are both from EB or both from EW; if two
edges from EB ∪ EW bound a hexagonal face and are not opposite one another, then
one is from EB and one from EW.

Proof. (i) Let x1, . . . , x5 be the vertices of a pentagonal face listed in cyclic order. Clearly,
at least one of these vertices must be gray, sayx1. There are threecases to consider and
they are illustrated inFig. 3.

Case 1:x1 is the only gray vertex. Then, by symmetry, we may assume thatx2 andx4
are black whilex3 andx5 are white. Note first that(x2, x3), (x3, x4) and(x4, x5) are not in
EB ∪ EW. Let y be the third vertex adjacent tox1. By thedefinitions ofEB andEW: if y
is colored white,(x1, x2) ∈ EB and(x1, x5) �∈ EB ∪ EW; if y is black,(x1, x5) ∈ EW and
(x1, x2) �∈ EB ∪ EW; if y is gray, either(x1, x2) ∈ EB or (x1, x5) ∈ EW butnot both.

Case 2:x1 and x2 are both colored gray. Then,(x1, x2) �∈ EB ∪ EW. Without loss
of generality, we may assume thatx3 is black. Supposex5 is also black (Case 2a), then
exactly oneof (x1, x5) and(x2, x3) is in EB. Furthermore,x4 is either white or gray and
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Fig. 4.

one easily checks that, in either case, neither of(x3, x4) and(x4, x5) belongs toEB ∪ EW.
Next suppose thatx5 is white (Case 2b). Thenx4 must be gray. Letz denote the third
vertex adjacent tox4. By symmetry, we may assume thatz is blackor gray. But then we
may recolorx1 andx4 white andx5 gray, contradicting our maximality condition. Hence
this second option isnot possible.

Case 3:x1 andx3 are both colored gray; then, without loss of generality, we may assume
that x2 is black. If either ofx4 or x5 are gray, we are in the previously considered case,
2b. Hence, by symmetry, we may assume thatx4 is black andx5 is white. There is a
Configuration 1 centered atx3 and neither of(x2, x3) and(x3, x4) can belong toEB. As
we have argued before, no matter which configuration containsx1, exactly oneof (x1, x2)

and(x1, x5) belongs toEB ∪ EW.
(ii) Let x1, . . . , x6 be the vertices of a hexagonal face listed in cyclic order. If none are

gray, then none of the edges of this face belong toEB ∪ EW. Hence, we assume thatx1 is
gray. In each of the cases that we now consider, we can, without loss of generality, always
assume that the non-gray vertex with smallest subscript is black. If there no other gray
vertices on the face (Case 1,Fig. 4), thenx2, x4 andx6 are black andx3 andx5 are white.
It follows at once and none of(x2, x3), (x3, x4), (x4, x5) and(x5, x6) belongs toEB ∪ EW.
Sincebothx2 andx6 are black, neither(x1, x2) nor (x1, x6) belongs toEB ∪ EW.

Since the reasoning is much the same in all of these cases, we will only outline the
remaining arguments. Now assume that there are exactly two gray vertices among thexi s.
If x2 is gray, we have Case 2. In this case, either(x1, x6) ∈ EW and (x2, x3) ∈ EB or
neither (x1, x6) nor (x2, x3) belongs toEB ∪ EW. If the second gray vertex isx3, we
have either Case 3 or Case 4. In Case 3, it is clear that none of the edges of the hexagon
belongs toEB ∪ EW. Consulting Case 4, either(x1, x2) ∈ EB or (x1, x6) ∈ EW and either
(x2, x3) ∈ EB or (x3, x4) ∈ EW. Of the four possible combinations only(x1, x2) ∈ EB

and(x2, x3) ∈ EB is excluded (byLemma 2). The only remaining possibilities for two
gray vertices are pictures as Cases 5 and 6. By definition, none of the edges of Case 5
belongs toEB ∪ EW. In Case 6, either(x1, x2) ∈ EB or (x1, x6) ∈ EW (but not both) and
either(x4, x5) ∈ EB or (x3, x4) ∈ EW (but not both).

By Lemma 1, no gray vertex is incident with more than one other gray vertex. So there
are no more than two consecutive gray vertices around this face. Thus, up to symmetry,
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there are just two possible patterns for three gray vertices and each yields two Cases,
numbered 7 through 10.

Case 7: either(x1, x6) ∈ EW and(x2, x3) ∈ EB or neither(x1, x2) nor (x1, x6) belongs
to EB ∪ EW; furthermore, neither of (x3, x4) and(x4, x5) belongs toEB.

Case 8: exactly one of(x1, x6) and(x2, x3) belongs toEB and either(x3, x4) ∈ EB or
(x4, x5) ∈ EW with the caveat that(x2, x3) and(x3, x4) cannot both belong toEB.

Case9: clearly none of the edges of the hexagon belongs toEB ∪ EW.
Case10: either (x2, x3) ∈ EB or (x3, x4) ∈ EW and either(x5, x6) ∈ EB or

(x4, x5) ∈ EW with the caveat that(x3, x4) and(x4, x5) cannot both belong toEW.
Finally, four gray vertices can be placed in only one way, up to symmetry, giving rise to

two Cases.
Case11: exactly one of(x2, x3) and(x1, x6) are inEB and exactly one of(x3, x4) and

(x5, x6) is in EB. So byLemma 2, either (x2, x3) and(x5, x6) are in EB or (x3, x4) and
(x1, x6) are inEB.

Case12: either(x2, x3) ∈ EB and(x1, x6) ∈ EW or (x3, x4) ∈ EB and(x5, x6) ∈ EW;
but Lemma 2precludes the possibility that all four edges belong toEB ∪ EW. �

If Γ is a benzenoid, letW2 andB2 denote the set of degree 2 white and black vertices,
respectively; ifΓ is a fullerene, letW2 = B2 = ∅. Recall that we may insist that no degree
2 vertex of a benzenoid is colored gray.

Lemma 4. LetΓ = (V, E, F) be a fullerene or a benzenoid with the vertex coloring and
edge partition defined above. Then:

|W| = |E| + |W2|
3

− 2|EW| + |EB|
3

and |B| = |E| + |B2|
3

− 2|EB| + |EW|
3

.

Proof. Let ci denote the number of typei configurations fromFig. 1 in Γ and letebw,
egw, egb andegg, denote the number of black–white edges, gray–white edges, gray–black
edges and gray–gray edges, respectively. These parameters are related by the following
equations:

egb = 2c1 + c2 + 2c3

egw = c1 + 2c2 + 2c3

egg = c3

ebw = |E| − egg − egb − egw.

We also have:

|EB| = c2 + c3

|EW| = c1 + c3

|EG| = c3.

Eliminating theci s, we get:

egb = 2|EW| + |EB| − |EG|
egw = 2|EB| + |EW| − |EG|
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egg = |EG|
ebw = |E| − 3|EB| − 3|EW| + |EG|.

Then:

3|W| − |W2| = ebw + egw = |E| − (2|EW| + |EB|).
Moving |W2| to the right-hand side and dividing by 3 gives the required formula for|W|;
a similar derivation gives the formula for|B|. �

Let Γ = (V, E, F) be a fullerene or a benzenoid and letΓ⊥ = (F, E, V) be its dual;
let Φ be subgraph ofΓ⊥ induced by the edge setEB∪EW. Then, byLemma 3, each vertex
of Φ that has degree 6 inΓ⊥ has degree 2 inΦ. If Γ is a fullerene, each vertex ofΦ that
has degree 5 inΓ⊥ has degree 1 inΦ. Hence, if Γ is a fullerene,Φ is disconnected with
six components,Π1, . . . ,Π6, each of which is an elementary path between a different pair
of vertices of degree 5 and, possibly, additional components that are elementary circuits.
If Γ is a benzenoid, the components ofΦ consists of some elementary circuits meeting in
the single vertex largedegree and, possibly, other disjoint elementary circuits. In the next
two lemmas, we explore the structure ofΦ in more detail. Our aim is to show thatΦ never
includes additional disjoint elementary circuits.

Consider any portion of an elementary dual path or circuit inΦ. Lemma 3(ii) excludes
the possibility of making sharp right or left turns. Hence, as we move along this path or
circuit we have, at each hexagon, the possibility of moving straightacross or across and
branching right or left. Since sharp turns are excluded, we may use the termsright turn and
left turnwithout ambiguity.

Lemma 5. Let Γ = (V, E, F) be a fullerene or a benzenoid with the vertex coloring and
edge partition defined above. Let∆ be a circuit in Φ. If Γ is a benzenoid, we assume that
the outside face is not a vertex of∆. If Γ = (V, E, F) is a fullerene arbitrarily choose
someface not among the hexagons that correspond to vertices of∆ to be the “outside”
face. LetΘ denote the subgraph ofΓ consisting of the hexagons corresponding to∆ and
its interior. Orient the circuit clockwise and let� and r denote the number of left and right
turns, respectively, and let p denote the number of interior pentagonal faces ofΘ . Then
p = 6 + � − r .

Proof. Referring to Fig. 5, thenumber of degree 2 vertices inΘ is n + r − �, wheren is
the length of∆. Hence, 3v − n − r + � = 2e, wherev ande are the numbers of vertices
and edges ofΘ . Next we note that the length of the boundary of the outside face ofΘ is
2n+r −� and the number of hexagonal faces ofθ is f − p−1, wheref is the total number
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of faces ofΘ . Hence, 6( f − p−1)+5p+ (2n+ r −�) = 2e. Solving these two equations
for 6v and 6f , respectively, and substituting them into Euler’s formula 6v − 6e+ 6 f = 12
yields the required formula. �

Lemma 6. LetΓ = (V, E, F) be a fullerene or a benzenoid with the vertex coloring and
edge partition defined above. LetΠ be a path or circuit in the subgraph ofΓ⊥ induced by
the edge set EB ∪ EW ThenΠ cannot make two consecutive right turns or two consecutive
left turns. Furthermore, if a path or circuit makes a right (left) turn then no pentagonal
face can abut two of its adjacent hexagons on the right (left) before it makes another turn.

Proof. Assume that ourpath or circuit takes two consecutive turns in the same direction
or takes a turn followed by a pentagonal face same side and assume that among all such
configurations we have selected the one with the shortest distance between the turns or the
turn and the pentagonal face. Without loss of generality we may orient the segment so that
the (first) turn is aright turn as we move along the segment left to right.

We may assume that none of the hexagons on the right of the path between the two
turns or between the turn and the pentagonal face belongs to another circuit or another
path: since paths and circuits cannot cross, the second circuit would have to have two turns
or a turn and pentagonal face closer together. There are just three configurations that we
need toinvestigate.

Consider two consecutive right turns as pictured inFig. 6. Thedual path or circuitΠ
is indicated by the heavy line. A vertex coloring has been selected. Note that if an edge
belongs toEW (EB) then its endpoints are colored gray and white (black) but which
endpoint is colored gray and which is colored white (black) is completely optional. In
the figures illustrating this proof, we have moved all of the gray vertices below the path
or circuit. The portion of the circuit or path inFig. 6 starts on the left in a hexagonal or
pentagonal face or in the outer face (for a benzenoid). If it is a hexagonal face, the arrows
indicate the possible directions in which it could continue to the left. The possibility of
crossing the edge labelede is excluded since, if it were to belong toEW, its white endpoint
could be recolored gray, giving three consecutive gray vertices. By relocating this segment
of Φ along the thinner dashed line, the gray vertices in the upper box will be recolored
black and the black vertices in the lower boxmay be recolored gray. This new coloring
has the same number of white vertices and one more black vertex for a contradiction. Note
that this argument is valid if we have a benzenoid and one or more of the faces on the right
between the two turns are the outer face.
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Fig. 7.

Fig. 8.

We assume next that we have a right turn followed by a pentagonal face abutting the
path on the right. That pentagonal face is the terminal vertex of a second dual path inΦ
and that path could exit the face to the left, the right or down. However, one easily sees that
exiting the pentagon to the left would contradict the coloring rules. So just two cases are
left; these are pictured inFigs. 7and8.

In the case that the path exits the pentagonal face downward, pictured inFig. 7, we
relocate the segment ofΦ coming in from the left and connect it to the path leaving
the pentagon and diverting theright end of our segment into the pentagon where it now
terminates. The gray vertices in the upper box will be recolored black, the black vertices
in the lower long box are recolored gray and the black vertex in the small box is recolored
white for the samenumber of black vertices, an increase of one white vertex and a
contradiction.

In the case pictured in Fig. 8, we relocate the segment ofΦ coming in from the
left and connect it to pentagon where it terminates. We then divert the right end of our
segment to the remainder of the path that started at the pentagon. Again the gray vertices
in the upper box will be recolored black and the black vertices in the lower box are
recolored gray for the same number of white vertices, an increase of one black vertex and a
contradiction. �

Wenow have thetools to eliminate the possibility of circuits inΦ whenΓ is a fullerene
and circuits that do not pass through the outside face whenΓ is a benzenoid. We dispose
of the case of benzenoids first. Sincea benzenoid has no pentagonal faces,Lemma 5tells
us that a circuit not through the outside face must have six more right turns than left turns.
But then it must make twoconsecutive right turns, which is impossible byLemma 6. The
case of fullerenes is a bit more complicated.
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Fig. 10.

Let Γ be a fullerene and∆ a circuit in Φ. We first note that, since the pentagonal faces
must be joined in pairs by paths that cannot cross∆, there mustbe an even number of
pentagonal faces on each side of∆. Then it follows from Lemma 5that, unless there are
six pentagonal faces on each side of∆, ∆ must taketwo consecutive right turns or two
consecutive left turns, in direct conflict withLemma 6. We conclude that∆ has the same
number (perhaps zero) of left and right turns and that they must alternate around∆.

In Fig. 9, we consider the case of at least one pair of turns. Applying the shift alteration
pictured in that figure we decrease the number of faces on the right side of the circuit and
one easily checks that the shift does not alter the numbers|W| and|B|. Repeated shifts must
eventually bring the circuit in contact witha pentagonal face. If that pentagon meets two
of the hexagons in the circuit, we are in conflict withLemma 6. However, if the pentagon
in the position indicated by the asterisk in the figure, the first contact does not satisfy the
hypothesis ofLemma 6. But then,one more shift andthis case is also eliminated.

Finally, suppose that the circuit makes no turns. If it does not meet a pentagonal face
on the right, we may shift the entire circuit to the circuit of hexagons on its right without
altering |W| and |B|. Again, we continue this shift until we meet a pentagonal face as
illustrated inFig. 10. Here we shiftdown once more amalgamating the circuit and the path
leaving the pentagonal face into a single path exiting the pentagon to the right as indicated.
The vertices in the row of gray vertices are recolored black and the black vertices in the
next row are recolored gray, except for theone in the box which is recolored white for a
net increase of one white vertex.
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We conclude that “stand alone” circuits ofhexagonal faces cannot occur, completing
the proof of our main result.

Theorem 1. LetΓ = (V, E, F) be a fullerene or a benzenoid with the vertex coloring and
edge partition defined above and letΓ⊥ = (F, E, V ) be its dual; letΦ be subgraph of
Γ⊥ induced by the edge set EB ∪ EW. Then, if Γ is a fullerene,Φ is disconnected with six
components,Π1, . . . ,Π6, each of which is an elementary path between a different pair of
vertices of degree 5; ifΓ is a benzenoid, thenΦ is empty or consist of elementary circuits
all meeting in the single vertex corresponding to the outer face.

Before moving on to fullerenes, we illustrate this result for benzenoids by drawing,
in Fig. 11, a smallest benzenoid that has a nonemptyΦ. In the figure, the two cells of
the bipartition ofΓ are symmetric, each consisting of 21 atoms. However,α(Γ ) = 22
as is illustrated in the figure. The dual elementary circuit through the outside face that
makes upΦ is indicated by the heavy line. The reader should now see how one can
construct a benzenoid with independence number arbitrarily larger than the largest cell
of the bipartition and requiring arbitrarily many circuits inΦ.

2. The independence numbers of the icosahedral fullerenes

We can use the techniques of the proof ofTheorem 1to say a bit about the structure of
the maximum independent sets in a fullerene. LetΓ = (V, E, F) be a fullerene and let
Γ⊥ = (F, E, V ) be its dual; let Φ be subgraph ofΓ⊥ induced by the edge setEB∪EW and
let Π be a path inΦ connecting two pentagonal faces. Suppose thatΠ takes at least two
turns. ByLemma 6, these turns must alternate in direction. Assume the path makes a left
then a right turn as pictured inFig. 9. Now relocate the path by shifting the “wave front”
to the right as indicated in the figure. If we were to encounter another pentagonal face
along this wave front, i.e. anywhere along the new portion of the path except the position
indicated by the asterisk,we would be in conflict withLemma 6. Hence we must be able
to continue this alteration until we have a path with exactly one left turn. We may then
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shif t in the opposite direction until we have a path with exactly one right turn sweeping
out a parallelogram of hexagonal faces between the two pentagonal faces. We call such a
parallelogram aclear field. Clear fields between pairs of pentagonal faces have been shaded
in Fig. 12. We have proved:

Lemma 7. Let Γ = (V, E, F) bea fullerene with the vertex coloring and edge partition
defined above and letΦ be subgraph ofΓ⊥ induced by the edge set EB ∪ EW. Then, if two
pentagonal faces ofΓ are joined by a path inΦ, they are separated by a clear field inΓ .

The icosahedral fullerenes are the duals of the planar triangulations introduced by
Goldberg [8], Caspar and Klug [3] and Coxeter [4]. These fullerenes are constructed by
cutting an equilateral triangle out of the hexagonal tessellation of the plane (with vertices
at the centers of faces of the tessellation) and pasting 20 copies of it on the faces of an
icosahedron. Since the relative position of two faces is uniquely determined by two non-
negative numbers, the triangle and the entire fullerene is uniquely determined by this pair
of numbers which we call the Coxeter coordinates of the fullerene.

In Fig. 12, we have drawn aportion of the icosahedral fullerene with Coxeter
coordinates(4, 7). Two of the 4by 7 clear field parallelograms are shaded in. Of course,
pentagonsP2 and P3 are also separated by a 4 by 7 clear field that is not shaded. In
addition, pentagonsP1 and P4 are separated by a 15 by 3 clear field that is not shaded.
In the icosahedral fullerene with Coxeter coordinates(p, p + r ), two adjacent pentagonal
faces are separated by ap by p + r clear field and any two nonadjacent but nonantipodal
pentagonal faces are separated by anr by 3p + r clear field.
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Recall that in a fullereneΓ = (V, E, F), 2|E| = 3|V |. So the formula for the
independence number of a fullerene (fromLemma 4) can be written in the form|W| =
|V |
2 − 2|EW|+|EB |

3 . Hence we must select the pairings of pentagons in such a way as to
minimize 2|EW| + |EB|. We first note that any two alternating paths in the clear field
between paired pentagons will have the same contribution to 2|EW| + |EB|; hence that
contribution is a property of the pairing. Referring to the figure, if the vertex labeledw

on the boundary ofP2 is colored white, the pairP1, P2 will contribute 4 to|EW| and 7
to |EB| for a total contribution of 15 to 2|EW| + |EB|. If the pair P3, P4 is also selected,
coloringw white will force the vertex labeledb on the boundary ofP3 to be colored black.
So that pairing will contribute 2× 7 + 4 = 18 to 2|EW| + |EB|. We alsonote that the pair
P1, P4 would contribute 2× 3 + 15 = 21 or 2× 15+ 3 = 33 to 2|EW| + |EB|. Hence
we would like to find a set of pairings so thateach pair contributes the minimum of 15 to
2|EW| + |EB|. We now show that such a pairing exists.

Referring again toFig. 12, wenote that, in the complete fullerene,P3 has five neighbor-
ing pentagonal faces; label the remaining twoP5 andP6 so thatP1, P2, P4, P5 andP6 occur
in counterclockwise order aroundP3. Oneeasily checks that, givenP1, P2 contributes 15
to 2|EW| + |EB| (w is white), then the pairsP3, P4 andP3, P6 would each contribute 18
while the pairP3, P5 would contribute only 15. Hence to minimize 2|EW|+|EB|, we must
select the pairP3, P5. In fact once we have selected the pairP1, P2 and the coloring that
makesits contribution 15, then the selection of the remaining pairs that contribute 15 is
forced. The pattern ofpairs is pictured inFig. 13. Sincethere are just five choices for a pair
containingP1, there are just five sets of pairings that yield maximum independent sets.
With the exception of the caser = 0, this is true for general icosahedral fullerenes.

Let Γ = (V, E, F) be the icosahedral fullerene with Coxeter coordinates(p, p + r )

where p, r ≥ 0 and at least one is positive. A pairing of two nearby pentagons will
contribute 2× p + (p + r ) = 3p + r or 2× (p + r ) + p = 3p + 2r to 2|EW| + |EB|,
depending on the orientation of the pair. As we noted above, any two nonadjacent but
nonantipodal pentagonal faces are separated by anr by 3p + r clear field. Such a pair
contributes 2×r +(3p+r ) = 3p+3r or 2×(3p+r )+r = 6p+3r to 2|EW|+|EB|, again
depending on the orientation of the pair. As we noted above, each the five sets of pairing
illustrated inFig. 13 is oriented so that each pair contributes 2× p + (p + r ) = 3p + r to
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Fig. 14.

2|EW| + |EB|. Hence:

|E| − 6(3p + r )

3
= |V |

2
− (6p + 2r ) = 30p2 + 30pr + 10r 2 − 6p − 2r.

We haveproved:

Corollary 2.1. Let Γ = (V, E, F) be the icosahedral fullerene with Coxeter coordinates
(p, p + r ) where p, r ≥ 0 and at least one of p and r is positive. Thenα(Γ ) = |V|

2− (6p + 2r ).

It is interesting to note that, in the case of icosahedral fullerene with Coxeter coordinates
(p, p) (r = 0), any pairing of pentagons separated by(p, p) clear fields yields maximum
independent sets and some pairings including pairs separated by(3p) clear fields also yield
maximum independent sets. Hence these icosahedral fullerene admit far more maximum
independent sets, relative to the their size, than do other icosahedral fullerenes.

3. Comments

For an arbitrary fullerene,one could compute the size of the maximum independent set
given by each of the 10 395 possible pairings ofits pentagonal faces and select the largest.
There should be some way to quickly eliminate many pairings from consideration, leading
to a reasonable algorithm for computing the independence number of an arbitrary fullerene.
One suspects that, for fullerenes with few symmetries, the number of pairings that yield
maximum independent sets will be quite small, perhaps just 1.

Once a pairing that gives the independence number has been determined, one could
construct all maximum independent sets associated with that pairing by coloring the
vertices in each clear field in all possible ways.The number of ways of coloring the clear
field will depend only on the Coxeter coordinates of the path and the “color” of the path.
Referring to Fig. 12, we will say that the upper left-hand path (clear field) has colorwhite
while the lower right-hand path has colorblack. Thenumber of ways that one may extend
the “outside” black and white coloring of the vertices to a black, white and gray coloring
of the vertices ofthe clear field that yield distinct maximum white independent sets will be
denoted byf (w, p, q) for a white path with Coxeter coordinates(p, q) and( f (b, p, q))

for a black path with those coordinates. We illustrate these definitions inFig. 14 with the
simplest of paths.
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In the case of a black path with Coxeter coordinates(0, q) we see that each of the
2q possible ways to interchange adjacent whiteand gray vertices correspond to different
(white) maximum independent sets. On the other hand, interchanging adjacent black and
gray vertices in the black path does not alter the (white) maximum independent set. If we
let Π1 . . .Π6 denote the paths inΦ that lead to a maximum independent (white) set, then
there will be f (c1, p1, q1)×· · ·× f (c6, p6, q6) maximum independent sets associated with
this collection of paths, whereci is the color of Πi and(pi , qi ) are its Coxeter coordinates.
Finally the totalnumber of maximum independent sets will be obtained by summing this
product over all choices of collection of six paths inΦ that givemaximum independent
sets.
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