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Abstract

We explore the structure of the maximum vertex independence sets in fullerenes: plane trivalent
graphs with pentagonal and hexagonal faces. Astrae time, we will consider benzenoids: plane
graphs with hexagonal faces and one large outer face. In the case of fullerenes, a maximum vertex
independence set may constructed as follows:

(i) Pair up the pentagonal faces.
(ii) Delete the edges of a shortest path in the daaling the paired faces @et a bipartite subgraph
of the fulerene.
(iif) Each of the deleted edges will join two vertices in the same cell of the bipartition; eliminating
one endpoint of each of the deleted edges results in two independent subsets.

The main @t of this paper is devoted to showing that for a properly chosen pairing, the larger of these
two independent subsets will be a maximum independent set. We also prove that the construction of a
maximum vertex independence set in a benzenoid is similar with the dual paths between pentagonal
faces replaced by dual circuits throutite outside face. At the end tfie paper, wallustrate this
method by computing the independence number for each of the icosahedral fullerenes.
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1. Theindependence number of afullerene or benzenoid

LetI" = (V, E, F) be afullerené,that is, a trivalent plane graph with only pentagonal
and hexagonal faces or a benzemithat is, a plane graph with hexagonal faces and
one large outer face such that all vertices have degree two or three with the vertices of
degree two restricted to the boundary of the outside facexlB) denote the (vertex)
independence number &t We wish b conputea(I").3 To accomplish this we letV be
a maximum vetex independent set df, we let B be a maximum vertex independent set
of 'inV —W and letG = V — B — W. We cobr the vetices inW white, the vertices
in B black, and the vertices i@ gray. A gray vertex with only black and gray neighbors
could be recolored white, and a gray vertex with only white and gray neighbors could be
recolored black. Hence, by the maximality\&fandB:

Lemma 1. In a fullerene or a benzenoid with the vertex coloring defined above, each gray
vertex is adjacent to a black vertex and to a white vertex.

Now if g € G is adjacent to two black vertices, let be the white vertex adjacent to
g and a&sign(g, w) to the edge seEyy; refer to Configuration 1 irFig. L If g € G is
adjacent to two white vertices, lbtbe the black vertex adjacent ¢gpand asign(g, b) to
Eg, Configuration 2Fig. 1. Referring to Configuration 3ig. 1, given two adjacent gray
vertices, arbitrarily label theng; andgy; then letb; be the black vertex adjacentde and
let wo be the white vertex adjacent¢p. Assign(gs, b1) to Eg, (g2, w2) to Ew and &sign
(01, O2) to the edge seEg. Findly, if I' is a benzenoid and admits a gray degree 2 vertex,
that vertex must be adjacent to one black and white vertex. Hence we may interchange
its color with that of either of its neighbors without alterifgy/|, |B| and|G|. Repeating
this operation as often as is necessary, we may “move” each degree 2, gray vertex into a
degree 3, gray vertex. Hence, without losgyeherality, we may assume that a benzenoid
has no degree 2gray vertices. This alteration is illustrated in the second paFrigf 2

Lemma2. LetI’ = (V, E, F) be a fullerene or a benzenoid with the vertex coloring and
edge partition defined above. Thgd| = |Eg| + |Ew| and no two edges in g£U Ew have
a common endpoint.

lror general information about fullerenes, cons@©[10] or [11].
2For general information about benzenoids, consiy2,5,12] or [13].
3 For information about interpreting(I") in the chemical context, se@|[
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Proof. By definition, each gray vertex is the endpoint of exactly one eddgegnu Ew
and each edge ikg U Eyw has exactly one gray endpoint. Heng8| = |[Eg U Ew| =
|Eg| + |Ewl; thelast equality holds sincky andEg are disjoint.

Now supposeg, € € Eg U Eyw have a common end poirk, Since each gray vertex is
incident with exactly one edge ifEg U Ew, X ¢ G. Supposex € B and lety andy’ be the
other endpoints of and€/, resgectively. Clearlyy, y' € G. If y were adjacent to another
black vertex, we would have Configuration 1 apd y) would not belong toEg. Thus,
ndthery nory’ is adjacent to another black vertex. But, then we may recolgray and
bothy andy’ black, contradicting the maximality d&8. Similarly, x ¢ W and we conclude
that no such exigs. 0O

Lemma3. LetI" = (V, E, F) be a fullerene or a benzenoid with the vertex coloring and
edge partition defined above.

(i) Each pentagonal face is incident with exactly one edge frgnuEEy.

(ii) Each hexagonal face is either incident with exactly two edges frgmu Eyy or with
no edges from EU Ew. Furthermore, f two edges from EU Ew bound a hexagonal
face and are opposite one another, they are both frogmdg both from Ey; if two
edges from g U Ew bound a hexagonal face and are not opposite one another, then
one is from g and one from k.

Proof. (i) Let xy, ..., X5 be the vertices of a pentagonal face listed in cyclic order. Clearly,
at least one of these vertices must be gray,»>saylhere ae threecases to consider and
they are illustrated ifrig. 3.

Case 1x1 is the only gray vertex. Then, by symmetry, we may assumexthahd x4
are black whilexs andxs are white. Note first thaixz, X3), (X3, X4) and(x4, Xs) are not in
Eg U Ew. Lety be the third vertex adjacent tq. By thedefinitions ofEg andEy: if y
is colored white(xs, X2) € Eg and(x1, xs) & Eg U Ew; if y is black, (X1, Xxs) € Ew and
(X1, X2) € Eg U Ew; if yis gray, eithel(x1, X2) € Eg or (x1, Xs) € Ew butnot both.

Case 2:x1 andxz are both colored gray. Theiixy, x2) ¢ Eg U Ew. Without loss
of genedlity, we may assume thads is black. Supposes is also black (Case 2a), then
exadly oneof (x1, Xxs) and(xz, X3) is in Eg. Furthermorey, is either white or gray and
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one easily checks that, in either case, neithéxefx4) and(x4, Xs) belongs toEg U Ew.
Next suppose thaks is white (Case 2b). Thers must be gray. Letz denote the third
vertex adjacent tog. By symmetry, we may assume thais blackor gray. But then we
may recolorx; andxs white andxs gray, contradicting our mémality condition. Hence
this second optiois not possible.

Case 3x1 andxs are both colored gray; then, \widut loss of generality, we may assume
thatx, is black. If either ofx4 or x5 are gray, we are in the previously considered case,
2b. Hence, by symmetry, we may assume thais black andxs is white. There is a
Configuration 1 centered ai and neither ofx2, x3) and(xs, X4) can belong tcEg. As
we have agued before, no matter which configuration containsexadly oneof (x1, X2)
and(x1, xs) belongs toEg U Ew.

(ii) Let xq, ..., Xp be the vertices of a hexagonal face listed in cyclic order. If none are
gray, then none of the edges of this face belonggdJ Ew. Herce, we assume thaj is
gray. In each of the cases that we now consider, we can, without loss of generality, always
assume that the non-gray vertex with smallest subscript is black. If there no other gray
vertices on the face (Case Rig. 4), thenxs, X4 andxg are black ancs andxs are white.

It follows at once and none @ko, X3), (X3, X4), (X4, Xs) and(xs, Xg) belongs toEg U Ew.
Sincebothxy andxg are black, neithex1, X2) nor (X1, Xg) belongs toEg U Ew.

Since the reasoning is much the same in all of these cases, we will only outline the
remairning arguments. Now assume that there are exactly two gray vertices amaoxg.the
If x2 is gray, we have Case 2. In this case, eithar xg) € Ew and (X2, Xx3) € Eg or
nether (X1, Xg) hor (X2, x3) belongs toEg U Ew. If the second gray vertex ix3, we
have either Case 3 or Case 4. In Case 3, it is clear that none of the edges of the hexagon
belongs toEg U Eyy. Conallting Case 4, eithefx1, X2) € Eg or (X1, Xg) € Ew and either
(X2, X3) € Eg or (X3, Xg) € Ew. Of the four possible combinations on{xi, x2) € Ep
and(xg, x3) € Ep is excuded (byLemma 3. The only remaining possibilities for two
gray vertices are pictures as Cases 5 and 6. By definition, none of the edges of Case 5
belongs toEg U Ew. In Case 6, eithefx1, X2) € Eg or (X1, Xg) € Ew (but not both) and
either(xa, Xs5) € Ep or (X3, X4) € Ew (but not both).

By Lemma 1 no grg vertex is inddent with more than one other gray vertex. So there
are no more than two consecutive gray vertices around this face. Thus, up to symmetry,
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there are just two possible patterns foreth gray vertices and each yields two Cases,
numbered 7 through 10.

Case 7: eithefx1, Xg) € Ew and(x2, X3) € Ep or neither(xy, X2) nor (X1, Xg) belongs
to Eg U Ew; furthermore nether of (x3, X4) and(Xa, Xs) belongs toEg.

Case 8: eactly one of(x1, Xg) and(xz, X3) belongs toEg and eitherxs, X4) € Eg or
(X4, X5) € Ew with the caveat thaix, x3) and(xs, X4) cannot both belong t&g.

Case9: clearly none of the edges of the hexagon belondsga Eyy.

Casel0: either(xo,x3) € Ep or (x3, X4) € Ew and either(xs,Xg) € Epg or
(X4, X5) € Ew with the caveat thaixs, X4) and(x4, Xs) cannot both belong t&yy.

Finally, four gray vertices can be placed in pohe way, up to symmetry, giving rise to
two Cases.

Casell: exactly one ofxz, x3) and(x1, Xg) are inEg and exactly one ofxs, X4) and
(X5, Xg) is in Eg. So byLemma 2 either (X2, X3) and (s, Xg) are in Eg or (X3, X4) and
(X1, Xg) are inEg.

Casel2: either(xz, X3) € Eg and(x1, Xg) € Ew or (X3, X4) € Eg and(Xs, Xg) € Ew;
butLemma 2precludes the possibility that all four edges belondtpuU Eyy. O

If I is a benzaoid, letW, and Bz denote the set of degree 2 white and black vertices,
respectively; ifl" is a fullerene, leiW, = By = @. Recall that we may insist that no degree
2 vertex of a bazenoid is colored gray.

Lemmad. LetI" = (V, E, F) be afullerene or a benzenoid with the vertex coloring and
edge partition defined above. Then:

E| + |W. 2|E E E|+|B 2|E E
[El+ W2l _ 2[Ewl+IEsl IBI=| |+ [B2l _ 2[Es[+ [Ew|

Wi = 3 3 3 3

Proof. Let ¢; denote the number of typgeconfigurations fronFig. 1in I" and letey,,
€gw, €gb andegg, denote the number of black—white edges, gray—white edges, gray—black
edges and gray—gray edges, respectivelygsehparameters are related by the following
equations:

€gb = 2C1 + C2 + 2C3

€gw = C1 + 2C2 + 2C3

€yg = C3

€ow = | E| — €gg — €gb — Eguw-
We also have:

|[Eg| =C2+C3
|[Ew| =cC1+¢C3
|Eg| = Cs.

Eliminating thec;s, we get:

€b = 2|Ew| + |Eg| — |EG]|
€yw = 2|Eg| + |Ew| — |EGl|



J.E. Graver / European Journal of Combinatorics 27 (2006) 850-863 855

Fig. 5.

€gg = |EGl|
€w = |E| — 3|Eg| — 3|Ew| + |Egl.

Then:
W[ — Wa| = epy + €guw = |E| — (2|Ewl + |EB)).

Moving |W-| to the right-hand sideral dividing by 3 gives the required formula foiv|;
a simlar derivation gives the formulafgB|. O

Let ' = (V, E, F) be a fullerene or a benzenoid and Iét = (F, E, V) be its dual;
let & be subgraph of * induced by the edge sEg U Ew. Then, byLemma 3 each vertex
of ¢ that has degree 6 i+ has degree 2 i®b. If I' is a fullerene, each vertex af that
has degree 5 i+ has degree 1 ib. Herce, if I' is a fullerene,® is dismnnected with
six components/ly, ..., Ils, each of which is an elementary path between a different pair
of vertices of degree 5 and, possibly, additional components that are elementary circuits.
If I' is a benzenoid, the components @fconsists of some elementary circuits meeting in
the single vertex largdegree and, possibly, other disjoint elementary circuits. In the next
two lemmas, we explore the structure &fin more detail. Our aim is to show thétnever
includes additional disjoint elementary circuits.

Consider any portion of an elementary dual path or circui?in.emma 3ii) excludes
the possibility of making sharp right or left turns. Hence, as we move along this path or
circuit we have, at each hexagon, the paisitof moving straightacross or across and
branching right or left. Since sharp turns are excluded, we may use thertghttsirn and
left turn without ambiguity.

Lemmab. LetI" = (V, E, F) be a fullerene or a benzenoid with the vertex coloring and
edge partition defined above. Ldtbe a circuit in @. If I" is a benzaoid, we assume that
the outside face is not a vertex af. If I' = (V, E, F) is a fullerene arbitrarily choose
sameface not among the hexagons that correspond to vertice$ wf be the ‘outside”
face. Let© denote the subgraph df consisting of the hexagons correspondingt@and

its interior. Orient the circuit clockwise and Iétand r denote the number of left and right
turns, respectively, and let p denote the number of interior pentagonal faces. dthen
p=6+£¢—r.

Proof. Refering to Fig. 5, thenumber of degree 2 vertices ® isn +r — ¢, wheren is
the length of A. Herce, ¥ — n —r + £ = 2e, wherev ande are the numbers of vertices
and edges ob. Next we note that the length of the boundary of the outside fac® o
2n+r — ¢ and the number of hexagonal facega$ f — p— 1, wheref is the toal number
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of faces of©. Herce, § f — p—1)+5p+ (2n+r — £) = 2e. Solving these two equations
for 6v and 6f, respectively, and substituting them into Euler’'s formua-66e+ 6f = 12
yields the required formula. O

Lemma6. LetI" = (V, E, F) be a fullerene or a benzenoid with the vertex coloring and
edge partition defined above. LBtbe a path or circuit in the subgraph df* induced by

the edge set EU Ew ThenIl cannot make two consecutive right turns or two consecutive
left turns. Furthermore, if a path or circuit makes a right (left) turn then no pentagonal
face can abut two of its adjacent hexagons on the right (left) before it makes another turn.

Proof. Assume that oupath or circuit takes two consecutive turns in the same direction

or takes a turn followed by a pentagonal face same side and assume that among all such
configurations we have selected the one with the shortest distance between the turns or the
turn and the pentagonal face. Without loss aiigmlity we may orient the segment so that

the (first) turn is aight turn as we move along the segment left to right.

We may assume that none of the hexagons on the right of the path between the two
turns or between the turn and the pentagonal face belongs to another circuit or another
path: since paths and circuits cannot cross, the second circuit would have to have two turns
or a turn and pentagonal face closer together. There are just three configurations that we
need tanvestigate.

Consider two consecutive right turns as picturedrig. 6. The dual path or circuitl/
is indicated by the heavy line. A vertex calog has been selected. Note that if an edge
belongs toEw (Eg) then its endpoints are colored gray and white (black) but which
endpoint is colored gray and which is colored white (black) is completely optional. In
the figures illustrating this proof, we have moved all of the gray vertices below the path
or circuit. The portion of the circuit or path iRig. 6 starts on the left in a hexagonal or
pentagonal face or in the outer face (for abenoid). If it is a hexagonal face, the arrows
indicate the possible directions in which it could continue to the left. The possibility of
crossing the edge labeleds excluded since, if it were to belong Eyy, its white endpoint
could be recolored gray, giving three consecutive gray vertices. By relocating this segment
of @ along the thinner dashed line, the gray vertices in the upper box will be recolored
black and the black vertices in the lower bavay be recolored gray. This new coloring
has the same number of white vertices and one more black vertex for a contradiction. Note
that this argument is valid if we have a lzemoid and one or more of the faces on the right
between the two turns are the outer face.
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We assume next that we have a right turn followed by a pentagonal face abutting the
path on the right. That pentagonal face is the terminal vertex of a second dual path in
and that path could exit the face to the left, the right or down. However, one easily sees that
exiting the pentagon to the left would contradict the coloring rules. So just two cases are
left; these are pictured iRigs. 7and8.

In the case that the path exits the pentagonal face downward, pictuféd.iid we
relocate the segment ab coming in from the left and connect it to the path leaving
the pentagon and diverting thight end of our segment into the pentagon where it now
terminates. The gray vertices in the upper box will be recolored black, the black vertices
in the lower long box are recolored gray and the black vertex in the small box is recolored
white for the samenumber of black vertices, an increase of one white vertex and a
contradiction.

In the case fgtured in Fig. 8 we relaate the segment of coming in from the
left and connect it to pgagon where it terminates. We then divert the right end of our
segment to the remainder of the path that started at the pentagon. Again the gray vertices
in the upper box will be recolored black and the black vertices in the lower box are
recolored gray for the same number of whitetiees, an increase of one black vertex and a
contradiction. O

We now hawve thetools to eliminate the possibility of circuits i@ when! is a fullerene
and circuits that do not pass through the outside face whena benzaoid. We dispose
of the case of benzenoids first. Sirc&enzenoid has no pentagonal fadesmma 5Stells
us that a circuit not through the outside face must have six more right turns than left turns.
But then t must make twaonsecutive right turns, which is impossible bymma 6 The
case of fullerenes is a bit more complicated.
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Fig. 10.

Let I" be a fullerene and\ a circut in ¢. We first note that, since the pentagonal faces
must be joined in pairs by paths that cannot crdsshere musbe an even number of
pentagonal faces on each sidefThen t follows from Lemma 5that, unless there are
six pentagonal faces on each side&f A must taketwo consecutive ght turns or two
consecutive left turns, in direct conflict wittemma 6 We conclude thatA has the same
number (perhaps zero) of left and right turns and that they must alternate afound

In Fig. 9, we consider the case of at least one pair of turns. Applying the shift alteration
pictured in that figure we decrease the numbidiaces on the right side of the circuit and
one easily checks that the shift does not alter the nuniérand| B|. Repeated shifts must
eventually bring the circuit in contact wita pentagonal face. If that pentagon meets two
of the hexagons in the circuit, we are in conflict witamma 6 However, if he pentagon
in the position indicated by the asterisk in the figure, the first contact does not satisfy the
hypothesis o emma 6 But then,one more shift anthis case is also eliminated.

Finally, suppose that the circuit makes no turns. If it does not meet a pentagonal face
on the right, we may shift the entire circuit to the circuit of hexagons on its right without
altering |W| and |B|. Again, we continue this shift until we meet a pentagonal face as
illustrated inFig. 10. Here we shifdown once more amalgamating the circuit and the path
leaving the pentagonal face into a single patitiieg the pentagon to #hright as indicated.
The vertices in the row of gray vertices aexolored black and the black vertices in the
next row are recolored gray, except for tiee in the box which isacolored white for a
net increase of one white vertex.
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Fig. 11.

We conclude that “stand alone” circuits bexagonal faces cannot occur, completing
the poof of our main result.

Theorem 1. LetI" = (V, E, F) be afullerene or a benzenoid with the vertex coloring and
edge partition defined above and [Et- = (F, E, V) be its dual; letd be subgraph of
I't induced by the edge segE Ew. Then, if I is a fullerene,® is disonnected with six
componentsily, ..., Ils, each of viich is an elementary path between a different pair of
vertices of degree 5; if' is a benzeoid, then® is empty or consist of elementary circuits
all meeting in the single vertex corresponding to the outer face.

Before moving on to fullerenes, we illustrate this result for benzenoids by drawing,
in Fig. 11, a smallest benzenoid that has a nonemgtyIn the figure, the wo cdls of
the bipartition of " are symmetric, each consisting of 21 atoms. Howevef,) = 22
as is illustrated in the figure. The dual elemery circuit through the outside face that
makes up® is indicated by the heavy line. The reader should now see how one can
construct a benzenoid witmdependence number arbitrarily larger than the largest cell
of the bipartition and requiring arbitrarily many circuits én

2. Theindependence numbersof theicosahedral fullerenes

We can use the techniques of the proofldfeorem 1to say a bit about the structure of
the maximum indpendent sets in a fullerene. LEt = (V, E, F) be a fullerene and let
I't = (F, E, V) beits dug let & be subgraph of *+ induced by the edge sEg UE\y and
let IT be a path ing connecting two pentagonal faces. Suppose thaakes at least two
turns. ByLemma 6 these turns mst alternate in direction. Assume the path makes a left
then a right turn as pictured fig. 9. Now relacate the path by shifting the “wave front”
to the right as indicated in the figure. If we were to encounter another pentagonal face
along this wave front, i.e. anywhere along the new portion of the path except the position
indicated by the asteriskye would be in conflict withLemma 6 Herce we must be able
to continue this alteration until we have a path with exactly one left turn. We may then
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shift in the opposite direction until we have a path with exactly one right turn sweeping
out a parallelogram of hexagonal faces begw the two pentagonal faces. We call such a
parallelogram &lear field Clear fields between pairs of pentagonal faces have been shaded
in Fig. 12. We have poved:

Lemma?7. Let I’ = (V, E, F) bea fullerene with the vertex coloring and edge partition
defined above and lek be subgraph of '+ induced by the edge segE Ew. The, if two
pentagonal faces af are joined by a path in?, they are sparated by a clear field if".

The icosahedral fullerenes are the duals of the planar triangulations introduced by
Goldberg B], Caspar and KlugJ] and Coxeter 4]. These fullerenes are constructed by
cutting an equilateral triangle out of the hegwaal tessellation of the plane (with vertices
at the centers of faces of the tessellation) and pasting 20 copies of it on the faces of an
icosahedron. Since the relative position of two faces is uniquely determined by two non-
negative numbers, the triangle and the entire fullerene is uniquely determined by this pair
of numbers which we call the Coxeter coordinates of the fullerene.

In Fig.12, we hae drawn aportion of the icosahedralullerene with Coxeter
coordinateg4, 7). Two of the 4by 7 clear field parallelograms are shaded in. Of course,
pentagonsP, and P; are also separated by a 4 by ‘eat field that is not shaded. In
addition, pentagon®; and P4 are separated by a 15 by 3 clear field that is not shaded.
In the icosahedral fullerene with Coxeter coordindtesp + r ), two adjacent pentagonal
faces are separated bypay p + r clear field and any two nonadjacent but nonantipodal
pentagonal faces are separated by &y 3p + r clear field.
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Fig. 13.

Recall that in a fullerend” = (V,E, F), 2/[E| = 3|V|. So the fomula for the
independence number of a fuIIerene (friemma 4 can be written in the formW| =
vl w Hence we must select the pairings of pentagons in such a way as to
m|n|m|ze 2Ew| + |Eg|. We first note that any two leernating paths in the clear field
between paired pentagons will have the same contribution&g,R+ |Eg|; herce that
contribution is a property of the pairing. Referring to the figure, if the vertex labeled
on the boundary of; is colored white, the paiPy, P> will contribute 4 to|Eyw| and 7
to |Eg| for a tatal contribution of 15 to PEw| + |Eg|. If the pair P3, P4 is also selected,
coloringw white will force the vertex labeled on the boundary oPs to be colored black.

So that pairing will contribute 2 7+ 4 = 18 to 2Ew| + |Eg|. We alsonote that the pair
P1, P4 would contribute 2x 3+ 15 = 21 or 2x 15+ 3 = 33 to 2Ew| + |Eg|. Herce
we would like to find a set of pairings so thedich pair contributes the minimum of 15 to
2|Ew/| + |Eg|. We now slow that sich a pairing exists.

Refaring again taFig. 12, wenote that, in the complete fulleren; has five neighbor-
ing pentagonal faces; label the remaining tmandPs so thatPy, P», P4, Ps andPs occur
in counterclockwise order arouri®y. Oneeasily checks that, giveR;, P, contributes 15
to 2/Ew| + |Eg| (w is white), then the pair®s, P, and P3, Ps would each contribute 18
while the pairPs, Ps would contribute only 15. Hence to minimiz€Ry| + |Eg|, we must
sekct the pairPs, Ps. In fact once we have selected the pjt P, and the coloring that
makesits contribution 15, then the selection of the remaining pairs that contribute 15 is
forced. The pattern gfairs b pidured inFig. 13. Sincethere are just five choices for a pair
containing Py, there areyst five sets of pairings that yield maximum independent sets.
With the exception of the case= 0, this is true for general icosahedral fullerenes.

Let I' = (V, E, F) be the icosahedral fullerene with Coxeter coordingfgsp + r)
where p,r > 0 and at least one is positive. A pairing of two nearby pentagons will
contribute 2x p+ (p+r)=3p+ror2x (p+r)+ p=3p+ 2r to 2 Ew| + |Eg|,
depending on the orientation of the pals we noted above, any two nonadjacent but
nonantipodal pentagonal faces are separated hy@an3p + r clear field. Such a pair
contributes Xr +(3p+r) = 3p+3r or 2x (3p+r)+r = 6p+3r to 2|Ew|+|Eg|, again
depending on the orientation of the pair. As we noted above, each the five sets of pairing
illustrated inFig. 13is oriented so that each pair contributeg  + (p+r) =3p+r to
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S, 0, =1

......

2|Ew| + |Eg]|. Herce:

w =%'—(6p+2r)=30p2+30pr+10‘2—6p—2r-

We haveproved:

Corollary 2.1. LetI' = (V, E, F) be the icosahedral fullerene with Coxeter coordinates
(p, p+r) where pr > 0 andat least one of p and r is positive. ThestI") = ‘VT‘
— (6p+2r).

Itis interesting to note that, in the case of icosahedral fullerene with Coxeter coordinates
(p, p) (r = 0), any pairing of pentagons separated ¢y, p) clear fields yields maximum
independent sets and some pairings including pairs separat8gpglear fields also yield
maximum independent sets. Hence these icosahedral fullerene admit far more maximum
independent sets, relative to the their size, than do other icosahedral fullerenes.

3. Comments

For an arlitrary fullereneone could compute the size of the maximum independent set
given by each of the 10 395 possible pairingé®pentagonal faces and select the largest.
There should be some way to quickly eliminate many pairings from consideration, leading
to a reasortale algorithm for computing the independ= number of an arbitrary fullerene.
One supects that, for fullerenes with few symmetries, the number of pairings that yield
maximum independent sets will be quite small, perhaps just 1.

Once a pairing that ges the ndependence number has been determined, one could
construct all maximum independent sets associated with that pairing by coloring the
vertices in each clear field in all possible ve&airhe number of ways of coloring the clear
field will depend only on the Coxeter coordinates of the path and the “color” of the path.
Refaring to Fig. 12, we will say that the upper left-hand path (clear field) has calbite
while the lower right-land path has coldslack Thenumber of ways that one may extend
the “outside” black and white coloring of the vertices to a black, white and gray coloring
of the vertices othe clear field that yield distinct maximum white independent sets will be
denoted byf (w, p, q) for a white path with Coxeter coordinatép, q) and(f (b, p, q))
for ablack path with those coordinates. We illustrate these definitioR$gnl4 with the
simplest of paths.
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In the case of a black path with Coxeter coording®s]) we see that each of the
249 possible ways to interchange adjacent wiaitel gray vertices correspond to different
(white) maximum independent sets. On thkesthand, interchanging adjacent black and
gray vertices in the black path does not alter the (white) maximum independent set. If we
let I . .. ITs denote the paths i that lead to a maximum inggendent (white) set, then
there will bef (c1, p1, 1) x- - - x f(Cs, Pe, gs) Maximum independent sets associated with
this collection of paths, wheig is the @lor of Il; and(p;, g;) are its Coxeter coordinates.
Finally the totalnumber of maximum independent sets will be obtained by summing this
product over all choices of collection of six pathsdnthat givemaximum independent
sets.
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