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Abstract

Abstract rigidity matroids are generalizations of the infinitesimal
rigidity matroids of frameworks in Euclidean space. In this paper we
give a local characterization for abstract rigidity in any dimension.
The conditions in this characterization are in many instances easier
to verify than those in the definition of these matroids.
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A framework in m-space is a triple (V, E,p), where (V, E) is a graph and
p is an embedding of V into real m-space. Let V = {1, 2, . . . , n}. Regarding
p as a point in real mn-space, the distance constraints corresponding to E
give a system of |E| quadratic equations in the coordinates of Rmn. The
solution set of these equations is an algebraic set A in mn-space called the
configuration space of p. Clearly p ∈ A and we may describe a physical
movement of the framework in space, that is, a movement of the vertices
which preserves the lengths of the edges, by a path in A starting at p. A
framework is rigid if the points on A in a neighborhood of p all correspond to
a framework congruent to (V, E,p), i.e. the only motions which preserve all
of the lengths of the edges are the direct isometries of Rm. One approach to
detecting rigidity is to replace the system of quadratic equations with their
derivatives,

(u(i)− u(j)) ∗ (p(i)− p(j)) = 0, for all (i, j) ∈ E ,

where u(i) denotes the initial velocity, at p(i), of a motion of the framework.
This system of linear equations represents the condition that, initially, the
motion neither stretches nor contracts the edges. We say that p is infinites-
imally rigid if the all solutions to this system arise from the infinitesimal
isometries of Rm, i.e. if the only solutions to the system are the restrictions
to the set {p(i)} of vector valued functions u on Rm which satisfy

(u(p)− u(q)) ∗ (p− q) = 0, for all p,q ∈ Rm.

Note that these infinitesimal isometries always yield solutions to the the
system of equations of the framework; in fact, they form a

(
m+1

2

)
dimensional

subspace of the solution space of the system of the framework. Thus, p is
infinitesimally rigid if and only if the dimension of the solution space of the
corresponding system is

(
m+1

2

)
. Taking a framework on the complete graph

(V, K), the resulting linear system may be used to define a matroid F(p) on
K by saying that E ⊆ K is independent if the system of linear equations
corresponding to E is independent. E is then infinitesimally rigid if the
closure of E in F(p) is K(V (E)), where V (E) denotes the set of vertices of
the edges in E and K(U), for any U ∈ V , denotes the set of all edges with
both endpoints in U .

More generally, given a finite set V let K = K(V ) denote the edge set of
the complete graph on V . Then a matroid Am on K with closure operator
〈·〉 is called an m-dimensional abstract rigidity matroid for V if, besides the
usual axioms for a matroid,
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C1 T ⊆ 〈T 〉;

C2 If R ⊆ T , then 〈R〉 ⊆ 〈T 〉;

C3 〈〈T 〉〉 = 〈T 〉.

C4 If s, t ∈ (E − 〈T 〉), then s ∈ 〈T ∪ {t}〉 if and only if t ∈ 〈T ∪ {s}〉.

it satisfies the additional conditions C5 and C6 below:

C5 If E,F ⊆ K and |V (E) ∩ V (F )| < m, then 〈E ∪ F 〉 ⊆ (K(V (E)) ∪
K(V (F ))).

C6 If 〈E〉 = K(V (E)), 〈F 〉 = K(V (F )) and |V (E) ∩ V (F )| ≥ m, then
〈E ∪ F 〉 = K(V (E ∪ F )).

Note that Axiom C5 implies 〈E〉 ⊆ K(V (E)), and, motivated by the infinites-
imal case, we say E ⊆ K is rigid if 〈E〉 = K(V (E)). With this definition,
C6 reads: if two rigid sets have m or more vertices in common, then their
union is rigid.

If p embeds the vertices of a framework in general position, then F(p) is
an abstract rigidity matroid. There exist, however, abstract rigidity matroids
which are not infinitesimal, [4], and abstract rigidity may also arise in other
contexts, see [3] or [5]. The purpose of this note is to characterize the m-
dimensional abstract rigidity matroids.

Let Am be an m-dimensional abstract rigidity matroid. If E is any edge
set such that |V (E)| ≤ m + 1 then, by C5, E is independent. In particular,
Km+1 is independent. If v 6∈ V (E) and F a set of m or fewer edges joining v
to vertices in V (E), then E ∪ F is called a 0-extension of E. Again by C5,
0-extensions of independent sets are independent. In particular, Km+2− e is
a 0-extension of Km+1, and hence independent. Moreover, Km+2 − e is the
union of two Km+1’s along a Km, and so by C6 〈Km+2− e〉 = Km+2, and we
have that Km+2 is a cycle in Am. The same kind of argument shows that, in

fact, if |V (E)| ≥ m + 1, then r(E) ≤ m|V (E)| −
(

m+1
2

)
with equality when

E is complete. For a more thorough treatment, see [4].
Given a general embedding p : V → Rm, the cocycles of an infinitesimal

rigidity matroid F(p) can be described via the rigidity matrix R(p). Using
elementary column operations it can be shown that the star S(v) of a vertex
v minus any m − 1 of the edges incident with v, is a cocycle. We call these(

n−1
m−1

)
cocycles the vertex cocycles of v; and, for an (m−1)-set A ⊆ S(v), we
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denote the vertex cocycle (S(v) − A) by SA(v). In the following lemma, we
see that SA(v) is a cocycle in any m-dimensional abstract rigidity matroid.
Later we will use these vertex cocycles to characterize m-dimensional abstract
rigidity matroids.

Lemma 1 Let (V, K) be the complete graph on n vertices for n > m + 1; let
M be a matroid on K and consider following three conditions:

a. For each v ∈ V and each (m − 1)-set A ⊆ S(v), SA(v) is a cocycle of
M.

b. No cycle of M contains a vertex of valence less than m + 1.

c. K(U) is independent for any U ⊆ V with |U | ≤ m, and each m-valent
0-extension of an independent set of M is also an independent set of
M.

Then condition a implies condition b, condition b implies condition c and if
M has rank m|V | −

(
m+1

2

)
, condition c implies condition a.

Proof:

(a ⇒ b) Let E ⊆ K, let v be a vertex of valence m or less in (V (E), E).
Choose an (m− 1)-set A in S(v) so that all but one edge of S(v) ∩ E
is in A. Since |E ∩ SA(v)| = 1 it follows that, if SA is a cocycle, then
E cannot be a cycle.

(b ⇒ c) All vertices of all subset of K(U), where |U | ≤ m, have valence less
than (m + 1), so K(U) can contain no cycle and is independent. An
m-valent 0-extension of an independent set E contains no cycle, since,
by b, that cycle would have to actually be a subset of E.

(c ⇒ a) For this we assume thatM has rank m|V |−
(

m+1
2

)
. Let v be a vertex

and A be an (m− 1)-subset of S(v). The valence of v in any basis is at
least m, otherwise those edges incident with v could be removed and
replaced with an m-valent 0-extension to make a larger basis. Thus,
SA(v) intersects every basis and so contains a cocycle. This cocycle
cannot be a proper subset of SA(v) since, for any edge e in SA(v), there
is a basis which intersects SA(v) in exactly that edge: let U be the
m-subset of V consisting of the endpoints of the edges in A and e other
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than v; for each u ∈ (V − U), including v, let Fu denote the set of m
edges joining u to the points in U ; finally, let B = K(U)∪(

⋃
u∈(V−U) Fu.

Since B is formed by a sequence of m-valent 0-extensions, starting with
K(U), it is independent; since |B| = m|V |−

(
m+1

2

)
, it is a basis. Clearly,

B ∩ SA(v) = e.

2

Lemma 2 Let (V, K) be the complete graph on n vertices, n > m + 1 and let

M be any matroid on K of rank m|V |−
(

m+1
2

)
satisfying any of the conditions

a–c in the previous lemma. Then, for any U ⊆ V with |U | ≥ m, we have

r(K(U)) = m|U | −
(

m+1
2

)
. In particular, K(U) is a cycle of M whenever

|U | = (m + 2).

Proof: Let U ⊂ V with |U | ≥ m. Let W be any m-subset of U and
let E consist of |U | −m 0-extensions of K(W ) using the vertices in U −W .
By condition c, E is an independent set in K(U) and counting the edges

of E, we see that r(K(U)) ≥ m|U | −
(

m+1
2

)
. On the other hand, if K(U)

contained an independent set larger than m|U |−
(

m+1
2

)
, we could augment it

by a sequence of m-valent 0-extensions, one for each vertex of V − U , to an
independent set which has more than m|V | −

(
m+1

2

)
edges, a contradiction.

Thus, r(K(U)) = m|U |−
(

m+1
2

)
. Furthermore, when |U | = m + 2, K(U) is a

cycle: Since, |K(U)| = m|U | −
(

m+1
2

)
+ 1, K(U) is dependent. On the other

hand, for any edge e ∈ K(U), K(U)− e may be constructed by making two
0-extension to K(U − {x, y}), where x and y are the endpoints of e, and is,
therefore, independent. 2

Theorem 1 Let (V, K) be the complete graph on n vertices, n > m + 1,
and let M be any matroid on K. Then M is an m-dimensional abstract
rigidity matroid on K, if and only if it has rank m|V | −

(
m+1

2

)
and one of

the following three conditions hold:

a. For each v ∈ V and each m− 1-subset A ⊆ S(v), SA(v) is a cocycle of
M.

b. No cycle of M contains a vertex of valence less than m + 1.
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c. K(U) is independent when U is an m-subset of V and each m-valent
0-extension of an independent set of M is also an independent set of
M.

Proof: If M is an m-dimensional abstract rigidity matroid on K, then,
as we have seen,M has rank m|V | −

(
m+1

2

)
and 0-extensions of independent

sets are independent, hence Lemma 1 implies that conditions a–c hold.
Conversely, suppose thatM has rank m|V | −

(
m+1

2

)
and one, and hence,

by Lemma 1, all of conditions a–c hold. We must show that M satisfies
axioms C5 and C6. We first note that, since a maximal independent set
of K(U) can be extended by m-valent 0-extensions to an independent set
containing any given edge not in in K(U), that K(U) is a closed set, in other
words that 〈E〉 ⊆ K(V (E)). We also note that the previous lemma implies
that any edge set which can be obtained from a copy of Km by a sequence
of 0-extensions is a basis.

Suppose that U,W ⊆ V with |U ∩W | < m. Since 〈K(U) ∪ K(W )〉 ⊆
K(U ∪ W ), any edge of 〈K(U) ∪ K(W )〉 not in K(U) ∪ K(W ) must be
the form (u, w) for some u ∈ U and w ∈ W . Start with a copy of Km+1

which contains U ∩W as well as u and w. Perform a sequence of m-valent
0-extensions to add the rest of the vertices of U ∪W such that, when adding
a vertex of U , the extension touches as many vertices of U already taken as
possible. The result is a basis for K(U ∪W ) which contains the edge (u, w)
as well as bases for K(U) and K(W ), hence a basis for K(U)∪K(W ). Thus
(u, w) is not in 〈K(U) ∪K(W )〉 and C5 is satisfied.

If |U ∩W | ≥ m, we can first make a basis for K(U ∩W ) by starting with
a copy of Km in K ∩W and performing m-valent 0-extensions. Continue to
perform m-valent 0-extensions to add all the vertices of U −W and W − U
with the vertices of attachment in U ∩W . The result is independent and, by
the edge count, is a basis for K(U ∪W ) which is contained in K(U)∪K(V ),
hence C6 is verified. 2

In the above theorem, we use a global bound on the rank to specify
the dimension of the matroid. In the characterization below we use a local
condition to achieve the same purpose.

Theorem 2 A matroid M on the edge set of Kn is an m-dimensional ab-
stract rigidity matroid if and only if all of the Km+2’s are cycles and all of
the SA(v)’s are cocycles.
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Figure 1: Wheels are dependent in dimension 2

Proof: IfM is a m-dimensional abstract rigidity matroid, then, by Theo-
rem 1, all of the SA(v)’s are cocycles and, by Lemma 2, every copy of Km+2

is a cycle.
Conversely, Suppose every copy of Km+2 is a cycle and all of the SA(v)’s

are cocycles. By Lemma 1, every 0-extension of an independent set is in-
dependent. Since every copy of Km+2 is a cycle, every copy of Km+1 is
independent.

Let l ≥ 3 and define the graph Wm(l) as the join of a circuit of length l
with a complete graph on m−1 vertices. (The join of two graphs is obtained
from the disjoint union by setting each vertex in the first summand adjacent
to each vertex in the second.) We call Wm(l) an m-dimensional wheel. W3(4)
and W3(6) are drawn in Figure 2. We show that an m-dimensional wheel
is dependent by induction, the initial case being Wm(3) = Km+2: We have
that Wm(l + 1) is (Wm(l) ∪Km+2) − e where the Km+2 intersects Wm(l) in
a Km+1, and the edge e belongs to the l-circuit, see Figure 1. Now let e be
an edge of Wm(l) from the l-circuit. Wm(l) − e is independent since it can
be constructed from the central copy of Km−1 by a sequence of 0-extensions.
Also, adding any edge to Wm(l)−e yields a graph containing Wm(l′) for some
l′ ≤ l. Thus, Wm(n − m) − e cannot be extended to a larger independent

set, and so is a basis forM, hence the dimension ofM is mn−
(

m+1
2

)
. The

result now follows from the previous theorem. 2

Corollary 1 Wm(l) is a dependent in every abstract rigidity matroid of
dimension m. Wm(l) is a cycle in dimension m for m = 1, 2.

W2(l) is a cycle in every abstract rigidity matroid of dimension 2 since
every proper subset can be obtained from K3 by a sequence of 0-extensions.
By the same token, Wm(l)−e is independent in any abstract rigidity matroid
of dimension m if e is either a “spoke” or an edge of the “rim”, however
removing edges from the “hub” may leave a dependent set. For example,
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W3(4), although dependent, is not a cycle in every 3-dimensional abstract
rigidity matroid. W3(4) is the join of an edge e with a 4-gon. Deleting e
yields the graph of an octahedron which, if W3(4) were a cycle, would be
independent and rigid. Bricard [2], however, has given an example of an
octahedral graph which is generally embedded and flexible.
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Figure 2: W3(4) and W3(6).

As stated in the abstract, these two theorems can greatly simplify the
verification that a matroid is actually an m-dimensional abstract rigidity
matroid. We close this note with two simple examples. First, the usual proof
that infinitesimal rigidity matroids are abstract rigidity matroids involves
some rather complicated geometric constructions. However, as noted above,
it follows directly from the rigidity matrix that that the SA(v)′s are cocycles
and it is very easy to show that the copies of Km+2 are all cycles. Thus,
Theorem 2 gives us easily that infinitesimal rigidity matroids are abstract
rigidity matroids.

Second, the simplest example of an abstract rigidity matroid which is not
an infinitesimal rigidity is constructed as follows: Take the 2-dimensional
generic rigidity matroid on six points and note that all copies of the complete
bipartite graph K3,3 are bases. Now add one copy of K3,3 to the list of cycles.
It follows from a result of Bolker and Roth [1], that if one of the copies of K3,3

in an infinitesimal rigidity matriod on six points is dependent then all copies
must be dependent. Thus, if we can show the result of this construction is
an abstract rigidity matroid, it is the example we seek. To show that it is
a matroid is straight forward. Having done that, one simply observes that
the rank of the matroid has been unaltered as is the fact that condition b of
Theorem 1 is satisfied. But then, by Theorem 1, this matroid is an abstract
rigidity matroid.
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