Reprinted from:

MATHEMATICAL
PROGRAMMING

Volume 9, No. 2, October 1975

ON THE FOUNDATIONS OF LINEAR AND INTEGER LINEAR
PROGRAMMING I*

Jack E. GRAVER
Syracuse University, Syracuse, New York, U.S.A.

pp. 207226

NORTH-HOLLAND PUBLISHING COMPANY — AMSTERDAM

Mathematical Programming 8 (1975) 207-226.
North-Holland Publishing Company

ON THE FOUNDATIONS OF LINEAR AND INTEGER LINEAR
PROGRAMMING 1*

Jack E. GRAVER
Syracuse University, Syracuse, New York, U.S.A.

Received 3 June 1974
Revised manuscript received 10 January 1975

In this paper we consider the question: how does the flow algorithm and the simplex
algorithm work? The usual answer has two parts: first a description of the “improve-
ment process”, and second a proof that if no further improvement can be made by this
process, an optimal vector has been found. This second part is usually based on duality —
a technique not available in the case of an arbitrary integer programming problem. We
wish to give a general description of “improvement processes” which will include both
the simplex and flow algorithms, which will be applicable to arbitrary integer program-
ming problems, and which will in themselves assure convergence to a solution.

Geometrically both the simplex algorithm and the flow algorithm may be described
as follows. At the it stage, we have a vertex (or feasible flow) to which is associated a
finite set of vectors, namely the set of edges leaving that vertex (or the set of unsaturated
paths). The algorithm proceeds by searching among this special set for a vector along
which the gain function is increasing. If such a vector is found, the algorithm continues
by moving along this vector as far as is possible while still remaining feasible. The search
is then repeated at this new feasible point.

We give a precise definition for sets of vectors, called test sets, which will include
those sets described above arising in the simplex and flow algorithms. We will then prove
that any “‘improvement process” which searches through a test set at each stage converges
to an optimal point in a finite number of steps. We also construct specific test sets which
are the natural extensions of the test sets employed by the flow algorithm to arbitrary
linear and integer linear programming problems.

0. Introduction

The purpose of this paper is to give an exposition of linear program-
ming which yields a parallel development for integer linear programming.
It is hoped that this treatment will produce some insights into the struc-
tures of some of the usual algorithms and into the nature of the difficul-

* This research was supported in part by the National Science Foundation.

207

208 J.E. Graver[Foundations of (integer) linear programming

ties inherent in integer linear programming problems. This development
is not intended for computer consumption and we will dispense with the
usual special forms so necessary for actual machine computation.

Consider the question: how does the flow algorithm and the simplex
algorithm work? The usual answer has two parts: first a description of
the “improvement process” and second a proof that if no further im-
provement can be made by this process, an optimal vector has been
found. This second part is usually based on duality — a technique not
available in the case of an arbitrary integer programming problem. We
wish to give a general description of “improvement processes” which
will include both the simplex and flow algorithms, which will be appli-
cable to arbitrary integer programming problems, and which will in them-
selves assure convergence to a solution.

Geometrically both the simplex algorithm and the flow algorithm
may be described as follows. At the ith stage, we have a vertex (or fea-
sible flow) to which is associated a finite set of vectors, namely the set
of edges leaving that vertex (or the set of unsaturated paths). The algo-
rithm proceeds by searching among this special set for a vector along
which the gain function is increasing. If such a vector is found, the algo-
rithm continues by moving along this vector as far as is possible while still
remaining feasible. The search is then repeated at this new feasible point.

In Section 2, sets of vectors like those which arise in the simplex and
flow algorithms will be given a precise definition. We will call them test
sets. We will then prove that any “improvement process’” which searches
through a test set at each stage converges to an optimal point in a finite
number of steps. In Sections 3 and 4, we construct specific test sets.
These are the natural extensions of the test sets which arise in the flow
algorithm.

Fig. 1.

J.E. Graver/Foundations of (integer) linear programming 209

At this point we introduce a very simple example which will be used
throughout this paper to illustrate the various concepts and results. Let
N be the network drawn in Fig. 1. Let s be the source and s’ the sink,
and assume edges 1, 2, 7, 8 have capacity 4 while edges 3, 4, 5, 6 have
capacity 3. Considering this as an integer programming problem (only
integral flows are permitted), we make the additional condition that only
an even number of units may flow through edge number four. This last
condition makes the problem different enough from the usual flow prob-
lem that it may be used to illustrate “how things work” in an arbitrary
integer linear programming problem.

1. Notation and definitions

The following letters and symbols are fixed throughout this paper.

Q: the rational numbers. The elements of Q will be denoted by lower
case greek letters.

Z: the integers. The elements of Z are also denoted by lower case
greek letters, or m, n, i and k.

Q": the vector space of n-tuples of rational numbers. The vectors in
Q" will be denoted by lower case latin letters.

Z": the vectors in Q” with integral components.

vw: the usual inner product of the vectors v and w.

R and §: two fixed, finite, disjoint subsets of Z7.

B(b): a fixed integer for each vectorb€E R U S

D (domain): the solution set of the system

bx=p(0) forallbeR,
bxz=p(b) forallbes.

Dy: DN Z". The vectors in D and Dy are usually called points and
will usually be denoted by x or y.

V: the subspace which is the solution set of bx =0 for all b€ R.

Vz: V. Z". The vectors of V or V; will usually be denoted by u, v,
or w.

g: a fixed vector in Q” called the gain function, gx is the function
value at x.

1.1. Definition. If x € D(Z)’ we say that x is (integral) feasible. If, in ad-
dition, gx > gy for all y € D5y, we say that x is (integral) optimal.

210 J.E. Graver/Foundations of (integer) linear programming

Many statements in this paper will be in the above form. The inten-
tion is that they be read twice: once as a linear programming statement
with all symbols and words in parenthesis deleted, and once again as an
integer linear programming statement with the parenthetical symbols
and words included.

1.2. Definition. An (integral) linear program consists of the sets R and
S, constants (b), and gain function g all defined as above, We say that
the (integral) linear program has been solved when either an (integral)
optimal vector is found or it is demonstrated that no such vector exists.

We may put our example in this form. Fori=1, 2, 3,5, 6, 7, 8, let
the ith component of the 8-tuple x = (x,, x,, ..., xg) represent the flow
through the ith edge of N (in the direction of the arrow). Let x, repre-
sent half the flow through the fourth edge; hence the condition that
x4 is integral will force the flow through the fourth edge to be even.
In order that x be a flow it must satisfy a “conservation condition” at
each vertex. These are given by the four vectorsin R. R = {by, b,, b3, by}
where

blz(la 0,—1;_29 0’ 05 0, 0); b2=(05 0: 170) 1)03 *1) 0))
b3=(0) 1) 0) Oy_l’_la(); 0); b4=(0’ 0’ 0)2$0) 1) 0)‘1))
B(b,) = B(b,) = B(by)=B(b,) = 0.

In order that x be a feasible flow it must satisfy sixteen inequalities, two
for each edge. For i=1,2,3,5,6,7,8, let ¢; denote the vector with
one in the ith position and zeros elsewhere, let ¢, denote the vector with
two in 4th position and zeros elsewhere. Finally let eg,;= —e; for
i=1,2,..,8. Then S={e}, e, ..., e}, Bleg)=0(ey)=...=P(eg)=0,
6(39)= 6(310): 6(315): 6(316)= —4, and 6(311)= 6(312)= 6(613)= 6(314) =
—3. Finally the gain function is the sum of the flows out of s, i.c,
g=(1,1,0,0,0,0,0,0).

1.3. Definition. For x € Dz, and vE V(z,,

a(z)(v Ix)=max{a: x tav €& D(Z)} .

The next four results follow at once from these definitions.

1.4. Proposition. [f x, y € D(zy, theny — x € V().

J.E. Graver[Foundations of (integer) linear programming 211
1.5. Proposition. If bu < 0 for some b € S, then
aw 1) = min | PO e s <o
otherwise a(v 1x) = oo,

1.6. Proposition. If x € Dy, vE€ V; and mis the greatest common divisor
of the components of v, then

ay(ix)= mi[ma(v)] .

1.7. Proposition. Let x €D(zy and vEV g, (and let m again be the
greatest common divisor of the components of v). Then for a > 0,
X tau e D(Z) ifand Only lfa < a(z)(v |x) (and mo € Z).

2. Test sets and algorithms

2.1. Definition. An (integral) test set T for x € Dz is a finite set of vec-
tors, T € V (zy» such that:

(DHforallte T, a(z)(t Ix)> 0;

(2)forall y D(Z), (y — x) = Z,cra,t, where o, is anonnegative ratio-
nal number (integer).

2.2. Proposition. If T is an (integral) test set for x € D(Z) and if for all
t€ T we have gt < 0, then x is (integral) optimal.

Proof. Assume that 7 is a test set for x € D(Z) and that gt < 0 whenever
teT Letye D(Z)’ then
k k
y—x= Z% ot;al;, g(y—x)=_Z>1ai(gti).
i= =

However «; > 0 and gf;< 0 for all j, then g(y —x)< 0 and gy <gx.

We have yet to prove that such test sets actually exist; this will be
done in the next few sections. For the present, we will simply describe
how these test sets are to be used.

212 J.E. Graver/Foundations of (integer) linear programming

2.3. Definition. An (integral) method consists of a non-empty subset
EC D(Z) and a collection of sets of vectors {7,:x € £} such that:
(1) T, is an (integral) test set for x;
(2) foreach x € Eandeacht e T, x+ a(z)(t Ix)te Eor a(Z)(t [x) = oo,
The method is said to be finite if £ is finite.

The actual process by which one searches through the test set 7, and
decides the next move (in the case x is not optimal) is not discussed in
this paper. For our purposes here we simply note that since 7, is finite,
any search technique will take only a finite number of steps. We will de-
fine a (search) procedure by its effect.

2.4. Definition. A procedure for an (integral) method £, {7, } is a func-
tion

P E- EU {e}
so that

X +a(z)(t Ix) ¢t for some f € Tx, where gt > 0,

P(x) =
&) x if no such ¢ exists,

where x + ¢ is denoted simply by ee.

2.5. Proposition. Let P be a procedure for an (integral) method E, {T, }.
If P(x)=x, then x is (integral) optimal;if P(x) # x, then x is not (integral)
optimal; if P(x) = o, then there is no optimal vector in D(Z).

Proof. If P(x) = x, then gt < 0 whenever a(z)(t |x)> 0. Thus by Proposi-
tion 2.2, x is (integral) optimal. If P(x) # x, then P(x) = x +a(Z)(t Ix) ¢,
where gt > 0 and a(z)(t Ix)> 0, Thus gP(x)=gx + a(z)(t Ix)(gt) > gx;it
follows that x is not optimal. Finally, if for some ¢, g¢ > 0 and a(z)(tlx)= oo,
then x;=x +it € D zyand gx; = gx +i(gt) approaches e with i.

2.6. Definition. An (integral) method £, {7, } with procedure P is an
algorithm if for each x € £ there exists a positive integer k£ so that
Pk(x) = PF=1(x) or oo,

2.7. Proposition. Any finite (integral) method E, {T,} along with any
procedure P is an algorithm.

Proof. Let x € Dz If P(x)+# x or -, then, as we have seen above,

J.E. Graver{Foundations of (integer) linear programming 213

gP(x) > gx. Therefore, unless P¢(x) = Pk~1(x) or « for some k, we have
a sequence of vectors in E: x, P(x), P2(x),.... Furthermore, since
gx < gP(x) < gP%2(x) < ..., they would all have to be distinct. Since E is
finite, this is impossible.

2.8. Proposition. If g is bounded from above on Dy, then any integral
method along with any procedure is an algorithm.

Proof. Assume that g is bounded from above on Dy and let £, {T,.} be
some integral method. We may assume without loss of generality that
each vector in 7, is in lowest terms, i.e., its components have no com-
mon factors. It follows that az(f1x), for each such ¢, is an integer.
Turning to g we observe that since its components are rational it is of
the form (1/m)h where h € Z7, Thus if v is any integral vector, gv =
(1/m)hv; and since Av is an integer it follows that gv > 0 implies that
gv> 1/m. Now putting all of the observations together we may con-
clude that for each t € T, eithergr < O orgt > 1/m.

If P is a procedure and P(x)+ x, then gP(x)> gx + 1/m, and if
x, P(x), P2(x), ..., P¥(x) are all distinct, then gP*(x) > gx + k/m. Since g
is bounded from above on D, PF(x) = Pk-1(x) for some £.

Conditions under which g will be bounded from above on Dz, will
be discussed in the next section.

3. The universal test set

In this section, we will establish the existence of a test set. In fact, we
will produce a single finite set M & ¥ which will contain a test set for
each x € D. To construct this set and to prove it is a test set, we must
introduce two relations on the set V.

3.1. Definition. We say that v and w are compatible if (bv) (bw) = 0 for
allb e s

We have a natural linear transformation from Q" into Q", where
S=1{by, by, ..., b, }:

vy = (B,v, byv, ..., b, V).

214 J.E. Graver|/Foundations of (integer) linear programming

v and w are compatible if v' and w' lie in the same “octant” of Q7. To
visualize compatibility in Q”, let A, be the hyperplane with equation
bx =f(b). {H,: b € S} is the collection of boundary hyperplanes of D.
let x€D, veV, and b € S. We have bx = S(b). If bv> 0 and o > 0,
then x + auis no closer to A than x. In this case we say that v is directed
away.from or parallel to H,. Similarly, if bv< 0, we say that v is di-
rected toward or parallel to ;. Now two vectors are compatible if their
directions relative to the boundary hyperplanes are the same.

3.2. Proposition. Compatibility is a symmetric, reflexive relation.

3.3. Proposition. If v is compatible with w and if « = 0, then v is compa-
tible with aw.

3.4, Proposition. [f v is compatible with both u and w, then it is compa-
tible with u + w.

These propositions follow directly from the definition of compatibi-
lity. Under some conditions compatibility is transitive, but before we
can show this we must introduce our second relation. This relation is
derived from set inclusion by assigning a finite set to each vector.

3.5. Definition. For v € Q", suppv=1{b: b€ S, bv+# 0} is called the
support of v.

The support of v is the set of b;€ § which correspond to non-zero
components of v'=(byv, b,v, ..., b, v). This definition also coincides
with the usual notion of the support of a function if we think of v as
mapping S into Q by v(b) = vb.

3.6. Proposition. If u and v are compatible, v and w are compatible, and
supp u € supp v, then u and w are compatible.

Proof. If b € supp u, (bu)(bv)> 0 and (bv)(bw) > 0; thus (bu)(bw)(bv)2 = 0.
Since b € supp u S supp v, bv+# 0 and (bv)?2 > 0. Combined with the
above this implies that (bu) (bw) = 0. If b & supp u, (bw) (bw) = 0. Thus
(bu)(bw)= O forallb e S.

The next proposition treats one of the difficulties which arise if SU R
fails to span Q”,

J.E. Graver/Foundations of (integer) linear programming 215

3.7. Proposition. (1) U= {v: v€ V and suppv = 0} is a subspace of V.
DifuelU xe D(Z)’ then a(z)(u |x) = oo,
(3) If gu # 0 for some u € U, then there is no optimal vector in D (z)-

Proof. (1) U is the solution space of bu =0 forallbe RuU S.

(2)If ue U, then buz 0 for all b €S, thus a(z)(u Ix) = oo for all
X € D(Z)-

(3) Let u € U and let gu # 0. We may assume that gu > 0, otherwise
we may replace u with (—u); we may also assume that u is integral. Thus
if Dz, contains one point x it contains the sequence x; = x +iu and gx;
approaches e with i,

Geometrically U is the subspace of Q" orthogonal to the subspace
spanned by R U §. Proposition 3.7 (3) can be restated as follows:

If g is not contained in the subspace spanned by R U S, then there is
no optimal vector.

There are standard techniques for checking whether or not g is in the
span of R U S, and we need not dwell on that problem. One way to
make sure that g is in the span of R U § is to assume that R U S spans
Q”. We will make this assumption and justify it by pointing out that one
may easily add constraints to S and R which yield an equivalent prob-
lem with U = {0}.

Henceforth we will assume U= {0} or equivalently: if v€ V and
supp v =@, thenv = 0.

3.8. Definition. v € V; is said to be minimal if supp v is a minimal sub-
setin {suppw: we& V, w # 0} and if the components of v have no com-
mon factors. M = {v: v is minimal}.

Under the assumption U= {0} the linear transformation v— v' =
(byv, byv, ..., b, v) where S={b,, by, ..., b,, } becomes an isomorphism
when restricted to V. Let V' = {v": v€ V} be the image of ¥ under this
linear isomorphism.

Given any subspace of Q™ it is natural to single out for special con-
sideration those vectors which have a minimal collection of non-zero
components. For example, if m = 3 and dim V' = 2, these special vectors
would lie on the lines of intersection of V' with the coordinate planes.
All vectors (except 0) on the same line have the same support. In general,
one can prove that two vectors in the subspace with the same minimal
support lie on the same one-dimensional subspace. It seems natural then

216 J.E. Graver/Foundations of (integer) linear programming

to single out one (or two) vectors for each minimal support. This is done
in our case by insisting that the preimage under ' is integral and in
“lowest terms”.

The most important result concerning the minimal vectors in V' is
that they span V' in a very special way: if w' € V', then w' is a positive
linear combination of minimal elements each of which is compatible
with w'. The important fact about such a spanning set is that there is no
“cancelling out” in this summation, i.e., the jth component of w’ is of
course the sum of the coefficients times the jth components of the mini-
mal vectors, but in this sum all of the terms have the same sign.

The sequence of definitions and results starting with Definition 3.8 are
the lifting back to V of these rather natural theorems for V.

3.9. Proposition. Ifv € Vand w € M so that supp v=suppw, then v = aw.
Furthermore, if ve M, then a = £1.

Proof. Since 0 ¢ M, the support of minimal vectors are not empty. Let
b € supp w = supp v, then bw and bv are both non-zero. Let « = bv/bw
and consider v — aw. This is a vector in ¥ and supp(v — aw)-& supp w.
However b & supp(v — aw) since b(v — aw) = bv — a(bw) = 0. Therefore,
supp(v — aw) C supp w. But w €M, therefore v — aw =0 and v =aw.
Finally, if v € M also, it, like w, must be integral and have no common
factors among its components; it follows that o = + 1.

3.10. Corollary. M is finite.

Proof. As we have seen above, each subset of S is the support of at most
two minimal vectors. Since the number of subsets of S is finite, it follows
that M is finite.

We wish to show now that foreachx € D, M, = {v: veM, a(vix)> 0}
is a test set for that x. To this end we prove:
)
3.11. Lemma. If v, w € V, where supp v S suppw and if S'={heS:
(bvY(bw) > O} # 0, then w — av, where « = min{bw/bv: b € 8"}, is com-
patible with w and supp(w — av) C supp w.

Proof. Let a be as defined above and let b € S, we have (b(w — av)) (bw) =
(bw)?2 — a(bv) (bw). Now if b & S, (bv) (bw) < 0 and (b(w — av)) (bw) >

J.E. Graver{/Foundations of (integer) linear programming 217

(bw)2 = 0. On the other hand, if b € §', then a < bw/bv and a(bv)(bw) <
(bw)2; thus (h(w — av))(bw) = 0. Therefore w and w — av are compa-
tible.

Assume that b & supp w, then b & supp v and bv = bw = 0; it follows
that b(w — av)= 0, i.e., b € supp(w — av). Thus supp(w — av) € supp w.
Finally, let b € §' be a vector such that @ = bw/bv. We have b € supp w,
however b(w — av)=0, i.e.,b & supp(w — av). Therefore supp(w — av) C
supp w.

3.12. Theorem. If we V, then w = Ef.‘zl v, where
(1) the v;are distinct elements of M,
(2) each v;is compatible with w;
(3) supp v; S supp w foreachi=1, ..., k;
(4) each o is positive.

Proof. The proof will proceed by induction on Isupp wl. If supp w is
minimal, the conclusion holds trivially. Now assume thatw € V and that
every vector in V with smaller support admits the above decomposition,
we may further assume that w & M. Thus there exists v € V not 0, so
that supp v C supp w. If (bv) (bw) < 0 for all b € S, we may replace v
by —v; thus we may assume that the hypotheses of Lemma 3.11 are
satisfied. We have then: v’ = w — av with the property that v’ is compa-
tible with w and supp v’ C supp w. Applying Lemma 3.11 again, we get
v"=w —a'v. Thusw = v" + a'v', where supp(a'v’) and supp v” are proper
subsets of supp w, and we may apply the induction hypothesis to a'v’
and v". We have o'v' = ZX_| ou; satisfying conditions 1 through 4 above.
Since supp v; & supp a'v’ € supp w, and v; is compatible with «'v’ while
a'v' is compatible with w, we may conclude (Proposition 3.6) thatv; is
compatible with w. The corresponding statements hold for the decom-
position of v”. We may then add these two decompositions; collecting
terms, to get the required decomposition for w.

3.13. Corollary. For each x € D, M, = {v: vE M, a(vix)> 0} is a test
set for x.

Proof. Let x, y€ D, thus y —x € V. We may apply Theorem 3.12 to
y —x to get y — x = % a,v; We have v;€ M and o, > 0, thus we need
only prove that a(v; lx)> 0.

Let b €S, if bv;< 0 we must show that §(b) — bx < 0. However
bv; < 0 implies that b € suppv,, it follows that b € supp(y — x) and

218 J.E. Graver/Foundations of (integer) linear programming

since v; and (y — x) are compatible, b(y — x) < 0. Now a(y — xlx)> 1,
hence f(b) — bx < 0O for this b.

3.14. Corollary. If x, y €D, then y =x +E{.‘=laivi,where the v, are dis-
tinct elements of M and 0< a;< a(v; |x), ie., x tau, €D for all i
Proof. We apply Theorem 3.12 to y — x to get y —x = ZX, ayu;, All
that remains to be proved is that a; < a(v;Ix). Assume that for some/
a; > a(v}- |x), then for some b € S, bvj < 0 and > B — bx)/bv/-. We
have that y — x and v; are compatible for all /, thus we may conclude
that 1b(y — x)I= X, a;|by;l. This implies 16(y — x)1 > a;lbyl or b(y —x)<
a;bv; < B(b) — bx; which in turn implies (8(b) — bx)/b(y — x) < 1. But
BB —=bx)/b(y —x)za(y —x1x)= 1.

We may now settle one question left open in Section 2.

3.15. Proposition. Assuming Dz, +# 0, g is bounded from above on Dz,
if and only if there exists no v € M such that gv > 0 and bv = 0 for all
be S

Proof. Assume that gv > 0 and that bv > 0 for all b € S. We have then
that a(v1x) =< for all x € D7y Letx € D(Z) and let x, = x +iv, then
gx; approaches e with i.

Conversely, assume that for any v € M either bv < 0 for some b € S or
gu< 0, Letx € D(Z) and define m = gx + Egv>0 a(vIx)(gv). Lety € D(Z)
and apply Corollary 3.14 to get y=x+ Ef;la,-l)i; it follows that
gy =gx + 2K aigv, < m.

At this point let us consider the geometrical significance of the vec-
tors in M. {S' — supp v} is the collection of vectors in .S which are ortho-
gonal to v. The geometric interpretation of Proposition 3.9 is that the
subspace of V orthogonal to {S — supp v} is the one-dimensional sub-
space of V spanned by v. {x:B(b)=bx for b€ RU {S — supp vi}is
then a line in Q" parallel to the subspace spanned by v. In fact it is the
intersection of the boundary hyperplanes {(x: 8(b) = bx)} forbeR U
{S — supp v}. M then represents the set of one-dimensional subspaces
parallel to the lines obtained by intersecting the hyperplanes {(x: f(b)=bx)}
for b € R US. The edges of D are subsets of these lines and thus M in-
cludes vectors which represent the directions of the edges of D.

Before concluding this section, let us turn to our example. In Table 3.16

J.E. Graver/Foundations of (integer| linear programming 219

we list the minimal vectors for this problem. As in a usual flow problem,
the minimal vectors may be easily identified since supp v = {e;, eg,;: the
ith component of v is not zero}. Thus the minimal vectors correspond to
elementary paths in N from s to s or to elementary c_ircuits. These latter
minimal vectors have zero gain and hence could be ignored; however they
will be of importance in the next section.

3.16. Table. M consists of the following 13 vectors and their negatives.
ml = (1; 0, 1) Oy Oy 05 1) O), mg = (O, 2’ _2> 1) 25 0) 0, 2)s
m,=(1, 0,1,0,-1, 1,0,1), my =(0,1, 0, O, 0, 1,0, 1,
m3 = (2’ O’ O’ 1’ O’ O’ O’ 2)’ mlo = (O’ 2’ 2’ _l’ O, 2’ 2’ 0)7
m4 = (21 Oy Oy 11 21 _21 21 O)y mll = (Oy Oy 21 _19 _21 21 Oy O)y
’n5=(11_ly 1101'—‘1’ Oy 0,0), m12=(01 09 21_11 Oy 0121_2)1
me = 2,-2,0,1, 0,-2,0,0), m =(0,0, 0, 0, 1,-1,1,—1).
m,=(0, 1,0,0, 1, 0,1,0),

To illustrate the use of this test set we will take as our procedure a
simple search through M in the given order.

We start with the zero flow x4 =(0, 0, 0, 0, 0, 0, 0, 0). We note that
em;=1fori=1,3,7, em;=—1"fori=9, 11, 15; and e;m; =0 forall
other values of i, Thus

Ble)—0

e;jm

a(m, |x) = min :i=9,11,15) =3.

We conclude that m; €M, . Since e5m,=—1 and (Bles) —e x)/e5 m, = 0,
a(my 1xy) = 0; hence m, EM g Continuing with these computatlons we
see that M, = {m,, ms, mq, mg}. In practice, one would not bother to
compute allof M, . Since gm,; =1, our procedure uses m, in the improve-
ment step., We have x1=P(xy)=(3,0,3,0,0,0,3,0). Now M, =
{—=my, m3, my, mg, mg} and x,=Px;)=(4,0,3,4,0,0, 3, 1). Then
M, = {—my, —m3, —ms, my, mg, mg, myg, my,}. Since g(—m) =g(—mz)=
—1 .8(—mg)=0,and g(m;) =1, x3=P(x,) =(4,1,3,1, 1,0, 4, 1). Finally,
= P(x3)=(4,4, 3,3, 1, 3,4, 4) is a maximal flow. That x, is optimal

can be seen by computing M, and showing gm < 0 for all m € M,
We observe that x, is not an integral flow. The difficulty arose in the

220 J.E. Graver[Foundations of (integer) linear programming

second step by including 3ms;. Here we had a(mslx,) =3 while
az(my1x,)=0. However, if we had bypassed m4 here and only made
integral improvements, we would have obtained x, =(3,1,3,0,1,0,4, 0)
and then x5=(3,4,3,0,1, 3,4, 3). We have Mx3= {—my, —my, ms,
Mg, —Mq, —Mg, —Myo, —My1, —M 4}, but since either az(m 1 x3) =0 or
gm< 0 foreachme an, we can proceed no further. However x5 is not
our optimal integral flow. This illustrates that M, is not in general an in-
tegral test set. Extending M to a universal integral test set is the object
of the next section.

4. The universal integral test set

We wish to find the “smallest™ collection of integral vectors in V' so
that every w € V, is a positive integral linear combination of vectors
from this collection (each of which is compatible with w). As we have
seen, M satisfies all of these conditions except that the coefficients may
not be integral. Thus it is not surprising that such a collection is generally
larger than M. In fact it is not clear at this point that such a collection is
finite.

We must introduce still another relation on V.

4.1. Definition. If v, w € ¥V, we say that v majorizes w if v and w are
compatible and |bvl = 1bwl for all b € S. We write v > w.

Assume that w = 2, a;v; (where for all i, a; is a positive integer,
supp v; S supp w, v; is compatible with w, v; € ¥, v;# 0). Then w major-
izes v; for all i. Clearly then, if w € ¥, and majorizes only w and O, then
it has only a trivial integral decomposition as above. Hence it must be-
long to the universal integral test set. It turns out that vectors of this type
are the only ones needed.

4.2. Proposition. (1) If v = w, then supp w € supp v.
(2) = is transitive and reflexive.

Proof. Assume that v> w. If b € supp v, bv=0. But Ibvi> Ibwl. Thus
bw = 0and b & supp w. Now assume that v > w, w > . We have u com-
patible with w, w compatible with v and supp « & supp w € supp v; thus
by Proposition 3.6, © is compatible with v. Finally 1bvl > |bwl > |bul for
allbe S

J.E. Graver[Foundations of (integer) linear programming 221

4.3. Definition. We say that v€ V, is indecomposable if v>w and
w € V; implies that w =v or w = 0. /= {v: v is indecomposable}.

As with M, we may get a geometric interpretation of /in V'. Let V,
be the image of V; under ' (the map v~ v'is defined just after Defini-
tion 3.8). Since each b in § is integral, bv is integral wherever v € V5.
Hence V7, is a sublattice of the lattice of integer vectors in V. Let us
fix some “‘octant” of Q" — for the sake of simplicity let us take the
first “octant”, i.e., the set of vectors with non-negative components, and
let us denote it by O;. Then V' intersects this octant, O, in a cone. The
image of M in this cone will generate the cone; the image of / in this
cone will generate the sublattice V, under addition only. Assume
dim V' =2, we may then draw a picture of the intersection of V' with
the first octant of Q7 (see Fig. 2). The heavy lines represent the intersec-
tions of the plane V' with the coordinate hyperplanes bounding 0. The
upper of the four cones defined by these lines represents O; N V'. The
lattice points of Q™ which lie in V' are indicated by the intersections of
the grid lines. The vectors in V7, are indicated by an asterisk, the origin
is denoted by O. The vectors v, vy, v,, v5 and v, are the indecomposable

11

[rrrrrrry

Fig. 2.

~
g
~

222 J.E. Graver/Foundations of (integer) linear programming

vectors whose images vy, v}, U5, U3 and vy lie in O, however only v, and
vy are minimal. One can easily see that each vector in O; N V' can be
written as a linear combination of vy and vy with non-negative rational
coefficients. For example: w'=3v;, +32vy. This example also illustrates
that the coefficients may indeed be non-integral, even for vectors in V.
It is also not difficult to see that every vector in O; N ¥, can be written
as a linear combination of vy, v, ..., vy, with non-negative integral coef-
ficients. For example: w' = v}, + 2vj.

4.4. Proposition. M C I and I is finite.

Proof. Let v € M and assume that v> w, where w € V,. We have then
suppw S suppv. If suppw=@, w=0 if suppw =suppv, w=av. In
this case v> w implies 0 < a < 1, but both v and w are integral and the
components of v have no common divisors; thus « =1 and w=v.
Now lete, =% -y lbvland let w € I. By Theorem 3.12, w = Ef.‘zlal-v,-.
If ;> 1, then w > v;> 0 and w # v; which contradicts the indecom-
posability of w, thusa < I fori =1, ..., k. Further,
k
Z) lbv.l< e, .

k
Ibwl < 27 a. 1bv.l < .
O

Finally, since U = {0}, the solution set to:
bw=0 forallb€R,
—e, <bw<eg, foralldbe&s, wisintegral,

is bounded and hence consists of a finite number of integral vectors.

4.5. Theorem. If w € V,, we can write w = Ef-‘zl a;v;, where
(1) the v; are distinct elements of I,
(2) each v; is majorized by w;
(3) each «; is a positive integer.

Proof. The proof will proceed by induction on Zycglbwl. If w € , the
conclusions hold trivially, thus we may assume thatv € ¥z, v# 0 orw
and w > v. From this we may conclude that w > w — v, where w —v#0
or w. It is also easy tosee that T, ¢lbwli= T, ¢1bvl + T, ¢ 1b(w — V)i
We may then apply the induction hypothesis to both v and (w — v).
Combining the two decompositions and collecting terms we get the re-
quired decomposition of w.

J.E. Graver/Foundations of (integer) linear programming 223

4.6. Corollary. For each x € Dy, I, = {v:v€E€ I and az(v1x)> 0} is an
integral test set for x.

Proof. Let x, y € D4, thus y — x € V;. We may apply Theorem 4.5 to
y—x to get y — x = =¥ a;u;. We have v;€ I and q; a positive integer,
thus we need only prove that a,(v; 1 x)> 0. Since the components of v;
have no common factors, this is equivalent to proving that a(v; 1 x) > 1.

Let b€ S, if bvy;< 0 we must show (8(b) — bx)/bv;> 1. However
(¥ — x) 2 v, thus 1b(y — x)I = 1by;| from which we conclude b(y — x) < bv;.
Now a(y — x 1 x)= 1, thus (B(b) — bx)/b(y — x) = 1. We get B(b) — bx <
b(y — x) < by; which implies (3(b) — bx)/bv; > 1.

We now return to our example. Since each indecomposable vector
must be the sum of minimal vectors with rational coefficients strictly
between O and 1, and since it may be arranged so that none of these
minimal elements has its support as a proper subset of the union of the
supports of the rest, we conclude that indecomposable vectors are sums
of {ms, my, mg, mg, myy, myy, my,} with coefficients 0, 3, or —3. The
indecomposable vectors are listed in Table 4.7.

4.7. Table. I consists of M plus the following 15 vectors and their nega-
tives:

o =(2, 0, 0,1,1,-1, 1,1)=4(my+m)),

iy =(2,-1, 0,1,0,~1, 0,1)=30ns+my),

iy =(, L,-1,1,1, 0, 0,2)=3(m;+my),

i, =(,-1,-1,1,0,-1, -1, 1)=3(my; — m) =3(mg — my,),

is =(1, 0,—1,1,1,—1, 0,)=(m;—m,)=4m, —m,)=Lmg +m),
g =, 0,~-1,1,0, 0,-1,2)=3(my—m,,),

=(2,—1, 0,1,1,-2, 1,0)=3(m, +my),

s =(,-1,-1,1,1,=2, 0,0)=}(m, —mp)=5(ms—m,)),

g =1, 0,-1,1,2,-2, 1,0)=3(m, —m,),

iy =(1,-2,-1,1,0,-2,-1,0)=3(m¢ — m,),

iy =0, 0,-2,1, 1,1, -1, 1)=3(mg — myg) = —5(m, + m,),

i, =0, 1,-2,1,2,-1, 0,1)=5(mg—my),

224 J.E. Graver/Foundations of (integer) linear programming

13 =(07 1,_2)111’ 0,"'172)=%(m8—m12),
l4 =(O,_1’_2’1,15_27—1,0)=E(m10+m11)’
i =(0,—1,-2,1,0,—1,-2, 1)=10n,, + m,,) .

Using this integral test set we may now solve our example problem.
Starting as before with x,=(0,0,0,0,0,0,0,0), we have [Xo =
{m,, ms, m;, mg}. Hence as before x; = P(x;)=(3,0,3,0,0,0, 3,0).
We then have

={-m, m,, mg, mg, i5 ic i3}, x,=P(x)=(3,1,3,0,1,0,4,0).

In our systematic search we find that mg is the first vector in 7, with
positive flow; thus x;3 = P(x,)=(3,4,3,0,1, 3,4, 3). As mdlcated in
Section 3, we could get this far using only minimal vectors — but no fur-
ther. The first vector in I, with positive flow is i5s. Hence x4 =
“4,4,2,1,2,2,4,4). This is opt1ma1 since no vector in /, has a positive
flow.

Let us step back from all of these computations and look at our prob-
lem again. If one were asked to describe an algorithm for this problem,
he would probably come up with the following obvious algorithm. First,
search for unsaturated paths from the source to the sink which if they
contain the 4th edge can sustain an additional flow of 2 units. When no
further paths of this type can be found, search for pairs of unsaturated
paths or one unsaturated path and one unsaturated circuit both passing
through the 4th edge. Sending one unit along each of these paths will then
send two units along the 4th edge. Steps of the first kind correspond to
minimal vectors while steps of the second kind correspond to non-mini-
mal indecomposable vectors. It follows then from Corollary 4.6 and
Proposition 2.8 that this natural technique is an algorithm, i.e., it con-
verges to an optimal flow in a finite number of steps. No separate proof
based on a duality theory or other ad hoc technique is necessary. For
an example of more practical applications of this theorem, see [6].

5. Conclusions and comments
Perhaps we should take a few moments to relate this development and

the usual network flow problem. In this case, we can easily compute M.
M consists of the unit flows along elementary paths between the source

J.E. Graver/Foundations of (integer) linear programming 225

and the sink, or around elementary circuits. An important feature which
distinguishes the integer network flow problem from the general integer
linear program is that in the former case / = M, while in the latter case /
is often much larger than M. One may view the size of / relative to the
size of M as a rough measure of the complexity introduced into a linear
programming problem by the inclusion of the condition that the solution
vector be integral.

In the usual solution of the network flow problem M =/ is never com-
puted. If x is a feasible integral flow, P(x) is obtained by constructing
an element of /. which has positive inner product with g (an unsatu-
rated path from the source to the sink) or by showing that no such ele-
ment exists. At each step the construction is started over from scratch.
With this technique, we are finding out the important facts about the
test set /, (constructing an element of /, with positive inner product or
showing that no such element exists) without ever constructing /.. In
the network flow problem, this can be done because of the very simple
nature of g and of the vectors in R and S. It is anticipated that one will
be able to generalize this technique. Indeed, finding efficient methods
for generating M, I, M,, I, and appropriate subsets of these, is a very im-
portant area for further research.

Equally important is the investigation of smaller test sets for both the
linear and integral linear cases. Smaller test sets is the subject of a second
paper to appear soon. In it, the techniques developed here are first ap-
plied to a study of the Simplex Algorithm and then to generalizations
of the Simplex Algorithm.

Finally a few comments about the motivation behind this paper are in
order. After studying the beautiful theory on network flows due to
Ford and Fulkerson [1], it is natural to try to extend their techniques to
arbitrary integer linear programming. The essential ideas needed to make
this extension arose in a series of two papers by the author with W.B.
Jurkat [3], [4]. In these papers, combinatorial designs were considered
as elements in various algebraic structures, in fact as the domains of a
specific class of integer linear programming problems. The simplest of
these problems, the maximum depth problem, is the subject of a survey
paper by the author [2]. Special cases of Theorem 3.12 and Proposition
4.4 are included in this paper. This special case of Proposition 4.4 is due
to Huckermann and Jurkat [5]. The survey paper also contains refer-
ences to the recurrence of this problem in game theory and in other
branches of combinatorics.

226 J.E, Graver/Foundations of (integer) linear programming

In the special case that S consists of the standard basis vectors for Q7,
as it does in the case of network flows, the support function is the one
employed by Tutte [7] in constructing a matroid from a chain group.
It is not difficult to see that even in the case of an arbitrary S, the sup-
ports of the minimal vectors form the circuits of a matroid on S. The
matroid so defined does not capture all of the structure of the minimal
elements themselves. Therefore matroid arguments do not enter into
the above discussions. However, this underlying matroid does play an
important part in its motivation.

References

[1] L.R.Ford, Jr. and D.R. Fulkerson, Flows in networks (Princeton University Press).

[2] J.E. Graver, “Maximum depth problem for indecomposable exact covers”, Proceedings of
the International Colloquium on Infinite and Finite Sets, Keszthely, Hungary (1973).

[3] J.E. Graver and W.B. Jurkat, “Algebra structures for general designs”, Journal of Algebra
23(1972) 574—589.

[4] 1.E. Graver and W.B. Jurkat, “The module structure of integral designs”, Journal of Combina-
torial Theory 15 (1973) 75-90.

{5] F. Huckermann and W.B. Jurkat, “Finiteness theorems for coverings and semi-groups”, to
appear.

[6] C.J. Leska, “Covering and matching problems as integer linear programs’, to appear.

[7] W.T. Tutte, “Lectures on Matroids”, Journal of Research of the National Bureau of Stan-
dards 69B (1965) 1-49.

